Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 80(4): 133, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897421

RESUMEN

Health care-associated infections (HAIs) contribute to a significant rate of morbidity, mortality, and financial burden on health systems. These infections are caused by multidrug-resistant bacteria that produce biofilm as the main virulence factor. This study aimed to evaluate the effect of the copper-based metallic compounds [Cu(phen)(pz)NO2]Cl (I), [Cu(bpy)(pz)(NO2)]Cl (II), and [Cu(phen)(INA)NO2]Cl (III), where phen = phenanthroline, bpy = bipyridine, pz = pyrazinamide, and INA = isonicotinic acid, against planktonic cells and biofilms formation of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli. The susceptibility of the microorganisms was evaluated by minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and time-kill curve assay on planktonic cells. The biofilm formation was evaluated by biomass quantification through staining with crystal violet (CV), colony-forming units (CFUs) quantification, and biofilm metabolic activity determination by XTT assay. The compounds showed bacteriostatic and bactericidal activity on all microorganisms analyzed. Regarding the antibiofilm activity, all metallic compounds were able to reduce significantly the biofilm biomass, colony-forming units, and the metabolic activity of remaining cells, varying the efficient concentration according to the strain analyzed. Interestingly, compounds (I), (II) and (III) did not exhibit DNA degradation activity even with up to 100 µM of these metal complexes. On the other hand, complexes (I) and (III) showed a remarkable capacity to cleave DNA upon addition of glutathione, a reducing agent (CuII/CuI) that leads to reactive oxygen species (ROS) formation. The results presented in this study showed promising antimicrobial and antibiofilm effects.


Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Humanos , Antibacterianos/farmacología , Cobre/farmacología , Dióxido de Nitrógeno/farmacología , Antiinfecciosos/farmacología , Bacterias , Biopelículas , Atención a la Salud , Pruebas de Sensibilidad Microbiana
2.
Zebrafish ; 17(2): 112-119, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32105571

RESUMEN

Schinus terebinthifolius Raddi (Anacardiaceae) is popularly known in Brazil as aroeira-da-praia and has pharmacological use as an astringent, antidiarrheal, anti-inflammatory, depurative, diuretic, and antifebrile agent. Although the neuropathic antinociceptive potential of S. terebinthifolius fruits has already been investigated, this study is the first one to analyze the acute antinociceptive effect of the essential oil of S. terebinthifolius (female) leaves (EOFSt) on adult zebrafish. EOFSt was submitted to antioxidant activity evaluation by two methods (ferrous ion-chelating capacity [FIC] and ß-carotene). The animals (n = 6/group) were treated orally (20 µL) with EOFSt (0.1, 0.5, or 1.0 mg/mL) or vehicle (0.9% sodium chloride [NaCl]; 20 µL), and submitted to nociception (formalin, cinnamaldehyde, capsaicin, glutamate, acidic saline, and hypertonic saline). Possible neuromodulation mechanisms, as well motor alterations and toxicity were also evaluated. In the FIC assay, EOFSt showed ferrous ion-chelating capacity in ∼40% to 90%. Regarding the ß-carotene bleaching assay, EOFSt showed inhibition in a 58% to 80% range. Oral administration of EOFSt showed no acute toxicity and did not alter the locomotor system of aZF, and reduced the nociceptive behavior in all tested models. These effects of EOFSt were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EOFSt was inhibited by naloxone, L-NAME, ketamine, camphor, ruthenium red, and amiloride. The antinociceptive effect of the EOFSt cornea was inhibited by capsazepine. EOFSt has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors, and transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), and acid-sensing ion channels. The EOFSt also has the pharmacological potential for corneal pain treatment and this effect is modulated by the TRPV1 channel.


Asunto(s)
Anacardiaceae/química , Analgésicos/farmacología , Aceites Volátiles/farmacología , Pez Cebra/fisiología , Administración Oral , Analgésicos/química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/metabolismo , Femenino , Masculino , Aceites Volátiles/química , Hojas de la Planta/química
3.
An Acad Bras Cienc ; 91(2): e20180204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31038534

RESUMEN

This study evaluated the antibacterial, antifungal, and antioxidant effect of 7-hydroxy-4',6-dimethoxy-isoflavone and essential oil of Myroxylon peruiferum. The compound was isolated and its structure elucidated by NMR. The chemical composition of essential oil determined by GC-MS analysis. To evaluation of antimicrobial activity, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) were performed. In addition to analysis of antioxidant activity, DPPH radical scavenging tests, iron chelating assay (FIC), antioxidant reducing power assay (FRAP) and ß-carotene bleaching assay (BCB) were performed. For the essential oil were identified 24 organized compounds having as main constituents; Germacrene D (17.2%), α-pinene (14.8%) and E-caryophyllene (10.8%). The results showed that isoflavone (2000 to 156 µg/mL) and essential oil (5.0 to 1.25%) present antibacterial and antifungal activity against Gram-positive bacteria and filamentous fungi. The isoflavone and the essential oil also presented antioxidant activity in all the tests, mainly on inhibition of the oxidation of ß-carotene test concentrations ranging from 60 to 100%. In conclusion, isoflavone and essential oil from M. peruiferum present an antimicrobial alternative against Gram-positive bacteria, especially of the genus Staphylococcus and dermatophyte fungi of the genus Trichophyton, as well as a natural compound antioxidant.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Myroxylon/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Antioxidantes/análisis , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Quelantes del Hierro , Isoflavonas/análisis , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Extractos Vegetales/química , Valores de Referencia , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...