Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Tipo de estudio
Intervalo de año de publicación
1.
Toxicol In Vitro ; 68: 104970, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32805376

RESUMEN

The isobenzofuran-1(3H)-ones (phthalides) exhibit various biological activities, including antioxidant activity on reactive oxygen species (ROS). An excess of ROS that cannot be naturally contained by cellular enzymatic systems is called redox imbalance, which damage cell membranes, proteins, and DNA, thereby possibly triggering neuronal death in several neurodegenerative diseases. Considering our ongoing efforts to find useful compounds to control redox imbalance, herein we evaluated the antioxidant activity of two phtalides (compounds 3 and 4), using primary cultures of hippocampal neurons. Spectrophotometric assays showed that compound 3 significantly reduced (p ≤ 0.05) ROS levels and lipid peroxidation compared to the control treatment, while compound 4 was unable at any of the tested concentrations. Despite their structural similarity, these compounds behave differently in the intracellular environment, which was reliably corroborated by the determination of oxidation potentials via cyclic voltammetry. It was demonstrated that compound 3 presents a lower oxidation potential. The combination of the mentioned methods allowed us to find a strong correlation between the chemical structure of compounds and their biological effects. Taking together, the results indicate that compound 3 presents desirable characteristics to act as a candidate pharmacological agent for use in the prevention and treatment of neurodegenerative diseases.


Asunto(s)
Antioxidantes/farmacología , Benzofuranos/farmacología , Neuronas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hipocampo/citología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría/métodos
2.
Anticancer Drugs ; 31(7): 718-727, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32568827

RESUMEN

Conventional treatments for metastatic melanomas are still ineffective and generate numerous side effects, justifying the search for new therapies. The antimetastatic effect of the named N-(2-(4-bromophenylamino)-5-(trifluoromethyl)phenyl)nicotinamide (SRVIC30) compound has been previously demonstrated in murine melanoma. Herein, we aimed to evaluate its effect when topically administrated in a murine subcutaneous melanoma model. For that, mice C57BL/6 were injected subcutaneously with 2 × 10 B16-F10 cells. Topical treatment began when tumors became visible on animal's back. Therefore, tumor volume was measured three times a week until it reaches 12 mm approximately. At this point, 40 mg oil-in-water cream (Lanette) without (control mice; n = 10) or with SRVIC30 compound (SRVIC30 group; n = 10 animals) were spread daily over the tumor external surface using a small brush for 14 days. The treatments increased the percentage of peroxidase antioxidant enzyme and dead cells via caspase-3 activation, with a consequent deposit of collagen fibers in the tumors. In addition, the skin of treated animals showed the presence of inflammatory infiltrate. Finally, SRVIC30 did not show signs of toxicity. Thus, we concluded that the topic administration of SRVIC30 was able to influence crucial anticancer processes such as tumor cells apoptosis and surrounding microenvironment.


Asunto(s)
Melanoma Experimental/tratamiento farmacológico , Niacinamida/análogos & derivados , Neoplasias Cutáneas/tratamiento farmacológico , Administración Tópica , Animales , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Niacinamida/efectos adversos , Niacinamida/farmacología , Neoplasias Cutáneas/patología
3.
J Glob Antimicrob Resist ; 22: 466-476, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32417591

RESUMEN

OBJECTIVE: Trypanosoma cruzi infection affects millions of people worldwide, and the drugs available for its treatment have limited efficacy. 1,8-Dioxooctahydroxanthenes and tetraketones are compounds with important biological applications. The aim of this study was to assess the trypanocidal and inflammatory activities of nine 1,8-dioxooctahydroxanthenes (1-9) and three tetraketones (10-12). METHODS AND RESULTS: By in vitro killing assay, three compounds were able to eliminate CL TdTomato expressing strain of T. cruzi, 9 (IC50=30.65µM), 10 (IC50=14.11µM), and 11 (IC50=26.43µM). However, only 9 was not toxic to Vero cells. Next, to evaluate the in vivo antitrypanosomal and immunological efficacy of 9, Swiss mice were infected with the Y and CL strains of T. cruzi and treated for 10 days with 50mg/kg of 9. This compound reduced the cardiac inflammatory infiltration in animals infected with both strains. Rank's ligand (RankL), CCL2, and interferon (IFN)-γ were measured in the cardiac tissue homogenate of the Y-strain-infected animals, and no interference of 9 was observed. However, compound 9 increased the RankL and interleukin (IL)-10 levels in CL-infected mice. No hepatic and renal toxicity was observed. CONCLUSION: Our findings showed that 1,8-dioxooctahydroxanthene has antiparasitic effect and ameliorates the cardiac inflammatory parameters related to T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Chlorocebus aethiops , Ratones , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Células Vero
4.
Braz. arch. biol. technol ; 63: e20190072, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1132180

RESUMEN

Abstract In live organisms, there is a balance between the production of reactive oxygen species (ROS) and their neutralization. The increased level of these species leads to a condition called redox imbalance. The aim of this study was to evaluate the protective action of isobenzofuranones in primary cultures of hippocampal neurons subjected to redox imbalance. To accomplish this, MTT and LIVE/DEAD assays were initially performed. In the cultures pretreated with isobenzofuranones 1 and 2, there was a higher number of live cells when compared to that in the untreated ones. Regarding redox imbalance, there was a significant increase in the intracellular levels of ROS. The cultures pretreated with isobenzofuranones showed a reduction in ROS levels. Lipid peroxidation caused by oxidative damage was significantly reduced in the cultures pretreated with isobenzofuranones 1 and 2. Taken together, these data show the ability of isobenzofuranones 1 and 2 to significantly minimize cytotoxicity, cell death, intracellular levels of ROS and lipid peroxidation induced by redox imbalance. These results suggest that isobenzofuranones 1 and 2 represent a possible alternative therapy for the neurodegenerative disturbances that are triggered by ROS production increases.


Asunto(s)
Animales , Masculino , Ratones , Oxidación-Reducción/efectos de los fármacos , Benzofuranos/farmacología , Especies Reactivas de Oxígeno , Fármacos Neuroprotectores/farmacología , Peróxido de Hidrógeno , Benzofuranos/síntesis química , Muerte Celular , Cultivo Primario de Células , Hipocampo/citología , Neuronas/metabolismo
5.
Molecules ; 20(12): 22435-44, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26694330

RESUMEN

Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. Clinically, leishmaniases range from cutaneous to visceral forms, with estimated global incidences of 1.2 and 0.4 million cases per year, respectively. The treatment of these diseases relies on multiple parenteral injections with pentavalent antimonials or amphotericin B. However, these pharmaceuticals are either too toxic or expensive for routine use in developing countries. These facts call for safer, cheaper, and more effective new antileishmanial drugs. In this investigation, we describe the results of the assessment of the activities of a series of isobenzofuran-1(3H)-ones (phtalides) against Leishmania (Leishmania) infantum chagasi, which is the main causative agent of visceral leishmaniasis in the New World. The compounds were tested at concentrations of 100, 75, 50, 25 and 6.25 µM over 24, 48, and 72 h. After 48 h of treatment at the 100 µM concentration, compounds 7 and 8 decreased parasite viability to 4% and 6%, respectively. The concentration that gives half-maximal responses (LC50) for the antileishmanial activities of compounds 7 and 8 against promastigotes after 24 h were 60.48 and 65.93 µM, respectively. Additionally, compounds 7 and 8 significantly reduced parasite infection in macrophages.


Asunto(s)
Antiprotozoarios/farmacología , Benzofuranos/farmacología , Leishmania infantum/efectos de los fármacos , Animales , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Células RAW 264.7
6.
Molecules ; 19(6): 8151-76, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24941340

RESUMEN

Dengue is a neglected disease responsible for 22,000 deaths each year in areas where it is endemic. To date, there is no clinically approved dengue vaccine or antiviral for human beings, even though there have been great efforts to accomplish these goals. Several approaches have been used in the search for dengue antivirals such as screening of compounds against dengue virus enzymes and structure-based computational discovery. During the last decades, researchers have turned their attention to nature, trying to identify compounds that can be used as dengue antivirals. Nature represents a vast reservoir of substances that can be explored with the aim of discovering new leads that can be either used directly as pharmaceuticals or can serve as lead structures that can be optimized towards the development of new antiviral agents against dengue. In this review we describe an assortment of natural products that have been reported as possessing dengue antiviral activity. The natural products are organized into classes of substances. When appropriate, structure-activity relationships are outlined. The biological assays used to assess antiviral activity are briefly described.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Virus del Dengue/efectos de los fármacos , Antivirales/química , Productos Biológicos/química , Replicación Viral/efectos de los fármacos
7.
J Agric Food Chem ; 61(23): 5540-9, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23678958

RESUMEN

A series of isobenzofuran-1(3H)-ones (phthalides), analogues of the naturally occurring phytotoxin cryphonectric acid, were designed, synthesized, and fully characterized by NMR, IR, and MS analyses. Their synthesis was achieved via condensation, aromatization, and acetylation reactions. The measurement of the electron transport chain in spinach chloroplasts showed that several derivatives are capable of interfering with the photosynthetic apparatus. Few of them were found to inhibit the basal rate, but a significant inhibition was brought about only at concentrations exceeding 50 µM. Some other analogues acted as uncouplers or energy transfer inhibitors, with a remarkably higher effectiveness. Isobenzofuranone addition to the culture medium inhibited the growth of the cyanobacterium Synechococcus elongatus , with patterns consistent with the effects measured in vitro upon isolated chloroplasts. The most active derivatives, being able to completely suppress algal growth at 20 µM, may represent structures to be exploited for the design of new active ingredients for weed control.


Asunto(s)
Benzofuranos/farmacología , Fotosíntesis/efectos de los fármacos , Spinacia oleracea/metabolismo , Synechococcus/metabolismo , Benzofuranos/síntesis química , Benzofuranos/química , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Transporte de Electrón/efectos de los fármacos , Spinacia oleracea/efectos de los fármacos , Synechococcus/efectos de los fármacos , Synechococcus/crecimiento & desarrollo
8.
Molecules ; 18(2): 1881-96, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23377131

RESUMEN

A series of thirteen C-3 functionalized isobenzofuran-1(3H)-ones (phtalides) was synthesized via condensation, aromatization, and acetylation reactions. NMR (one and two dimensional experiments), IR, and mass spectrometry analysis allowed confirmation of the identity of the synthesized compounds. The substances were submitted to in vitro bioassays against U937 (lymphoma) and K562 (myeloid leukemia) cancer cell lines using the MTT cytotoxicity assay. Some derivatives inhibited 90% of cell viability at 100 µM. Also, two phtalides presented biological activity superior than that of etoposide (VP16), a commercial drug used as a positive control in the assays. In silico drug properties of the evaluated compounds were calculated and the results are discussed.


Asunto(s)
Benzofuranos/síntesis química , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/toxicidad , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Etopósido/farmacología , Humanos , Concentración 50 Inhibidora , Células K562 , Espectroscopía de Resonancia Magnética , Relación Estructura-Actividad , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...