Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674360

RESUMEN

Epigenetic clocks are valuable tools for estimating both chronological and biological age by assessing DNA methylation levels at specific CpG dinucleotides. While conventional epigenetic clocks rely on genome-wide methylation data, targeted approaches offer a more efficient alternative. In this study, we explored the feasibility of constructing a minimized epigenetic clock utilizing data acquired through the iPlex MassARRAY technology. The study enrolled a cohort of relatively healthy individuals, and their methylation levels of eight specific CpG dinucleotides in genes SLC12A5, LDB2, FIGN, ACSS3, FHL2, and EPHX3 were evaluated using the iPlex MassARRAY system and the Illumina EPIC array. The methylation level of five studied CpG sites demonstrated significant correlations with chronological age and an acceptable convergence of data obtained by the iPlex MassARRAY and Illumina EPIC array. At the same time, the methylation level of three CpG sites showed a weak relationship with age and exhibited a low concordance between the data obtained from the two technologies. The construction of the epigenetic clock involved the utilization of different machine-learning models, including linear models, deep neural networks (DNN), and gradient-boosted decision trees (GBDT). The results obtained from these models were compared with each other and with the outcomes generated by other well-established epigenetic clocks. In our study, the TabNet architecture (deep tabular data learning architecture) exhibited the best performance (best MAE = 5.99). Although our minimized epigenetic clock yielded slightly higher age prediction errors compared to other epigenetic clocks, it still represents a viable alternative to the genome-wide epigenotyping array.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Niño , Adulto Joven , Epigenómica/métodos , Aprendizaje Automático
2.
Vaccines (Basel) ; 11(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37897003

RESUMEN

mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.

3.
Membranes (Basel) ; 12(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36295708

RESUMEN

Brain hypoxia remains an Achilles' heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks have received limited attention regarding their influence on the adaptive functional rearrangements of neural networks to oxygen deficiency. Herein, against the background of astrocytic Cx43 gap junction blockade by the selective blocker Gap19, we evaluated the features of spontaneous calcium activity and network characteristics of cells in primary cultures of the cerebral cortex, as well as the expression levels of metabotropic glutamate receptors 2 (mGluR2) and 5 (mGluR5) in the early and late periods after simulated hypoxia in vitro. We showed that, under normoxic conditions, blockade of Cx43 leads to an increase in the expression of metabotropic glutamate receptors mGluR2 and mGluR5 and long-term modulation of spontaneous calcium activity in primary cortical cultures, primarily expressed in the restructuring of the functional architectonics of neuron-glial networks through reducing the level of correlation between cells in the network and the percentage of existing correlated connections between cells. Blocking Cx43 during hypoxic injury has a pronounced neuroprotective effect. Together with the increased expression of mGluR5 receptors, a decrease in mGluR2 expression to the physiological level was found, which suggests the triggering of alternative molecular mechanisms of cell adaptation to hypoxia. Importantly, the blockade of Cx43 in hypoxic damage contributed to the maintenance of both the main parameters of the spontaneous calcium activity of primary cortical cultures and the functional architectonics of neuron-glial networks while maintaining the profile of calcium oscillations and calcium signal communications between cells at a highly correlated level. Our results demonstrate the crucial importance of astrocytic networks in functional brain adaptation to hypoxic damage and could be a promising target for the development of rational anti-hypoxic therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA