Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(3): 223-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38001393

RESUMEN

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.


Asunto(s)
Lisosomas , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Lisosomas/metabolismo , Homeostasis/fisiología , Autofagia/fisiología
2.
Nat Genet ; 55(10): 1735-1744, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735198

RESUMEN

Candidate cis-regulatory elements (cCREs) in microglia demonstrate the most substantial enrichment for Alzheimer's disease (AD) heritability compared to other brain cell types. However, whether and how these genome-wide association studies (GWAS) variants contribute to AD remain elusive. Here we prioritize 308 previously unreported AD risk variants at 181 cCREs by integrating genetic information with microglia-specific 3D epigenome annotation. We further establish the link between functional variants and target genes by single-cell CRISPRi screening in microglia. In addition, we show that AD variants exhibit allelic imbalance on target gene expression. In particular, rs7922621 is the effective variant in controlling TSPAN14 expression among other nominated variants in the same cCRE and exerts multiple physiological effects including reduced cell surface ADAM10 and altered soluble TREM2 (sTREM2) shedding. Our work represents a systematic approach to prioritize and characterize AD-associated variants and provides a roadmap for advancing genetic association to experimentally validated cell-type-specific phenotypes and mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Estudio de Asociación del Genoma Completo , Membrana Celular/metabolismo , Fenotipo
3.
Trends Cancer ; 9(10): 817-827, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37400313

RESUMEN

The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.


Asunto(s)
Microftalmía , Neoplasias , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microftalmía/metabolismo , Lisosomas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
4.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007018

RESUMEN

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Asunto(s)
Colesterol , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Cancer Discov ; 12(9): 2198-2219, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35771494

RESUMEN

The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE: Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Hierro-Azufre , Neoplasias Pancreáticas , Humanos , Disponibilidad Biológica , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Hierro/metabolismo , Hierro/uso terapéutico , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/uso terapéutico , Coactivadores de Receptor Nuclear/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Azufre/metabolismo , Azufre/uso terapéutico , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
6.
Mol Cell ; 82(8): 1514-1527, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452618

RESUMEN

As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.


Asunto(s)
Autofagosomas , Neoplasias , Autofagosomas/metabolismo , Autofagia/fisiología , Humanos , Lisosomas/metabolismo , Neoplasias/patología , Control de Calidad
7.
Trends Cell Biol ; 32(7): 597-610, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35123838

RESUMEN

Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection.


Asunto(s)
Lisosomas , Neoplasias , Humanos , Lisosomas/metabolismo , Neoplasias/patología
8.
Mol Biol Cell ; 32(22): ae4, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747628

RESUMEN

Today's cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, "the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease." In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?


Asunto(s)
Biología Celular , Lisosomas/patología , Neoplasias/patología , Animales , Autofagia/genética , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología
9.
EMBO J ; 40(19): e108863, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459017

RESUMEN

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Biomarcadores , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos , Transducción de Señal
10.
Dev Cell ; 56(13): 1989-2006.e6, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118203

RESUMEN

Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype.


Asunto(s)
Aurora Quinasa B/genética , Vesículas Extracelulares/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogénicas c-myc/genética , Metabolismo Energético/genética , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Humanos , Lisosomas/genética , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas/genética , Metabolismo/genética , Transducción de Señal/genética
11.
Nat Cell Biol ; 23(3): 232-242, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33686253

RESUMEN

Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Biomarcadores de Tumor/genética , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Membranas Intracelulares/patología , Lisosomas/genética , Lisosomas/patología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Transducción de Señal , Carga Tumoral
13.
Dev Cell ; 56(3): 260-276.e7, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33308480

RESUMEN

Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.


Asunto(s)
Colesterol/metabolismo , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Adulto , Animales , Células Cultivadas , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Proteína Niemann-Pick C1 , Proteolisis
14.
Nature ; 581(7806): 100-105, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376951

RESUMEN

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy1-3. However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found5 despite the frequent downregulation of MHC-I expression6-8. Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Asunto(s)
Adenocarcinoma/inmunología , Autofagia/inmunología , Carcinoma Ductal Pancreático/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Línea Celular Tumoral , Cloroquina/farmacología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Escape del Tumor/efectos de los fármacos
15.
Autophagy ; 16(8): 1524-1525, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32459143

RESUMEN

Major histocompatibility complex class I (MHC-I) is a key molecule in anti-tumor adaptive immunity. MHC-I is essential for endogenous antigen presentation by cancer cells and subsequent recognition and clearance by CD8+ T cells. Defects in MHC-I expression occur frequently in several cancers, leading to impaired antigen presentation, immune evasion and/or resistance to immune checkpoint blockade (ICB) therapy. Pancreatic ductal adenocarcinoma (PDAC), a deadly malignancy with dismal patient prognosis, is resistant to ICB and shows frequent downregulation of MHC-I independent of genetic mutations abrogating MHC-I expression. Previously, we showed that PDAC cells exhibit elevated levels of autophagy and lysosomal biogenesis, which together support the survival and growth of PDAC tumors via both cell-autonomous and non-cell-autonomous mechanisms. In our recent study, we have identified NBR1-mediated selective macroautophagy/autophagy of MHC-I as a novel mechanism that facilitates immune evasion by PDAC cells. Importantly, autophagy or lysosome inhibition restores MHC-I expression, leading to enhanced anti-tumor T cell immunity and improved response to ICB in transplanted tumor models in syngeneic host mice. Our results highlight a previously unknown function of autophagy and the lysosome in regulation of immunogenicity in PDAC, and provide a novel therapeutic strategy for targeting this deadly disease.


Asunto(s)
Autofagia/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Ratones
16.
Annu Rev Cancer Biol ; 3: 203-222, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31650096

RESUMEN

Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.

17.
Elife ; 82019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31134896

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a heterogeneous disease comprised of a basal-like subtype with mesenchymal gene signatures, undifferentiated histopathology and worse prognosis compared to the classical subtype. Despite their prognostic and therapeutic value, the key drivers that establish and control subtype identity remain unknown. Here, we demonstrate that PDA subtypes are not permanently encoded, and identify the GLI2 transcription factor as a master regulator of subtype inter-conversion. GLI2 is elevated in basal-like PDA lines and patient specimens, and forced GLI2 activation is sufficient to convert classical PDA cells to basal-like. Mechanistically, GLI2 upregulates expression of the pro-tumorigenic secreted protein, Osteopontin (OPN), which is especially critical for metastatic growth in vivo and adaptation to oncogenic KRAS ablation. Accordingly, elevated GLI2 and OPN levels predict shortened overall survival of PDA patients. Thus, the GLI2-OPN circuit is a driver of PDA cell plasticity that establishes and maintains an aggressive variant of this disease.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Plasticidad de la Célula , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Osteopontina/metabolismo , Neoplasias Pancreáticas/patología , Transcripción Genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Modelos Teóricos , Trasplante de Neoplasias , Trasplante Heterólogo
18.
Cell Metab ; 29(2): 236-238, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726755

RESUMEN

Cancer cells are dependent on functional autophagy both within their cytoplasm and systemically in the host to maintain growth. How systemic autophagy directly contributes to tumor growth remains unclear. In a study published in Nature, Poillet-Perez et al. (2018) show that host autophagy helps to maintain the levels of circulating arginine that feed tumor growth.


Asunto(s)
Autofagia , Neoplasias , Arginina , Humanos
19.
Science ; 356(6343): 1188-1192, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28619945

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosome by Rag guanosine triphosphatases (GTPases) and regulates anabolic pathways in response to nutrients. We found that MiT/TFE transcription factors-master regulators of lysosomal and melanosomal biogenesis and autophagy-control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice, this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth. Up-regulation of MiT/TFE genes in cells and tissues from patients and murine models of renal cell carcinoma, pancreatic ductal adenocarcinoma, and melanoma triggered RagD-mediated mTORC1 induction, resulting in cell hyperproliferation and cancer growth. Thus, this transcriptional regulatory mechanism enables cellular adaptation to nutrient availability and supports the energy-demanding metabolism of cancer cells.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/fisiopatología , Animales , Restricción Calórica , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Hígado/enzimología , Hígado/fisiopatología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Neoplasias/enzimología , Transducción de Señal
20.
Science ; 355(6331): 1306-1311, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28336668

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Animales , Transporte Biológico , Células CHO , HDL-Colesterol/metabolismo , Cricetulus , Activación Enzimática , Fibroblastos , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Mutación , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...