Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38752856

RESUMEN

Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency, reproducibility, and collaboration in AIRR-seq data analysis, serving as a model for handling and documenting bioinformatics pipelines in other research domains.


Asunto(s)
Biología Computacional , Programas Informáticos , Humanos , Biología Computacional/métodos , Reproducibilidad de los Resultados , Receptores Inmunológicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunidad Adaptativa/genética , Guías como Asunto
2.
Cell Rep ; 42(8): 112879, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37537844

RESUMEN

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.


Asunto(s)
Neuroblastoma , Síndrome de Opsoclonía-Mioclonía , Niño , Humanos , Autoinmunidad , Neuroblastoma/complicaciones , Neuroblastoma/metabolismo , Síndrome de Opsoclonía-Mioclonía/complicaciones , Síndrome de Opsoclonía-Mioclonía/patología , Autoanticuerpos , Genes MHC Clase II , Ataxia
3.
Nucleic Acids Res ; 51(16): e86, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548401

RESUMEN

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).


Asunto(s)
Genómica , Cadenas Pesadas de Inmunoglobulina , Receptores de Antígenos de Linfocitos B , Alelos , Genotipo , Receptores de Antígenos de Linfocitos B/genética , Cadenas Pesadas de Inmunoglobulina/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-37388275

RESUMEN

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

5.
J Immunol ; 210(10): 1607-1619, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37027017

RESUMEN

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.


Asunto(s)
Regiones Determinantes de Complementariedad , Humanos , Regiones Determinantes de Complementariedad/genética , Secuencia de Bases
6.
Nat Commun ; 14(1): 1462, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927854

RESUMEN

Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.


Asunto(s)
Linfocitos B , Cambio de Clase de Inmunoglobulina , Fosforilación , Cambio de Clase de Inmunoglobulina/genética , Centro Germinal , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
7.
Genome Res ; 33(1): 71-79, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526432

RESUMEN

Crohn's disease (CD) is a chronic relapsing-remitting inflammatory disorder of the gastrointestinal tract that is characterized by altered innate and adaptive immune function. Although massively parallel sequencing studies of the T cell receptor repertoire identified oligoclonal expansion of unique clones, much less is known about the B cell receptor (BCR) repertoire in CD. Here, we present a novel BCR repertoire sequencing data set from ileal biopsies from pediatric patients with CD and controls, and identify CD-specific somatic hypermutation (SHM) patterns, revealed by a machine learning (ML) algorithm trained on BCR repertoire sequences. Moreover, ML classification of a different data set from blood samples of adults with CD versus controls identified that V gene usage, clusters, or mutation frequencies yielded excellent results in classifying the disease (F1 > 90%). In summary, we show that an ML algorithm enables the classification of CD based on unique BCR repertoire features with high accuracy.


Asunto(s)
Enfermedad de Crohn , Adulto , Humanos , Niño , Enfermedad de Crohn/genética , Aprendizaje Automático , Biopsia , Algoritmos , Enfermedad Crónica
8.
Front Immunol ; 14: 1330153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38406579

RESUMEN

Introduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated. Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. To further improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. Results and discussion: The Reference Sets include less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), and also include a number of novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. Despite their smaller sizes, erroneous calls were eliminated, and excellent coverage was achieved when a set of repertoires comprising over 4 million V(D)J rearrangements from 99 individuals were analyzed using the Sets. The version-tracked AIRR-C IG Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly observed and previously reported sequences that can be confirmed by new high-quality data.


Asunto(s)
Genes de Inmunoglobulinas , Inmunoglobulinas , Humanos , Inmunoglobulinas/genética , Alelos , Recombinación V(D)J/genética , Células Germinativas
9.
Front Immunol ; 13: 888555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720344

RESUMEN

The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Región Variable de Inmunoglobulina , Animales , Haplotipos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN
10.
Genome Med ; 14(1): 2, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34991709

RESUMEN

BACKGROUND: T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance. The chromosomal loci encoding for the variable regions of TCRs and BCRs are challenging to decipher due to repetitive elements and undocumented structural variants. METHODS: To confront this challenge, AIRR-seq-based methods have recently been developed for B cells, enabling genotype and haplotype inference and discovery of undocumented alleles. However, this approach relies on complete coverage of the receptors' variable regions, whereas most T cell studies sequence a small fraction of that region. Here, we adapted a B cell pipeline for undocumented alleles, genotype, and haplotype inference for full and partial AIRR-seq TCR data sets. The pipeline also deals with gene assignment ambiguities, which is especially important in the analysis of data sets of partial sequences. RESULTS: From the full and partial AIRR-seq TCR data sets, we identified 39 undocumented polymorphisms in T cell receptor Beta V (TRBV) and 31 undocumented 5 ' UTR sequences. A subset of these inferences was also observed using independent genomic approaches. We found that a single nucleotide polymorphism differentiating between the two documented T cell receptor Beta D2 (TRBD2) alleles is strongly associated with dramatic changes in the expressed repertoire. CONCLUSIONS: We reveal a rich picture of germline variability and demonstrate how a single nucleotide polymorphism dramatically affects the composition of the whole repertoire. Our findings provide a basis for annotation of TCR repertoires for future basic and clinical studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos T alfa-beta , Alelos , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
11.
iScience ; 24(10): 103192, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34693229

RESUMEN

Inference of germline polymorphisms in immunoglobulin genes from B cell receptor repertoires is complicated by somatic hypermutations, sequencing/PCR errors, and by varying length of reference alleles. The light chain inference is particularly challenging owing to large gene duplications and absence of D genes. We analyzed the light chain cDNA sequences from naïve B cell receptor repertoires from 100 individuals. We optimized light chain allele inference by tweaking parameters of the TIgGER functions, extending the germline reference sequences, and establishing mismatch frequency patterns at polymorphic positions to filter out false-positive candidates. We identified 48 previously unreported variants of light chain variable genes. We selected 14 variants for validation and successfully validated 11 by Sanger sequencing. Clustering of light chain 5'UTR, L-PART1, and L-PART2 revealed partial intron retention in 11 kappa and 9 lambda V alleles. Our results provide insight into germline variation in human light chain immunoglobulin loci.

13.
Sci Immunol ; 6(61)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326184

RESUMEN

The spillover of animal coronaviruses (aCoVs) to humans has caused SARS, MERS, and COVID-19. While antibody responses displaying cross-reactivity between SARS-CoV-2 and seasonal/common cold human coronaviruses (hCoVs) have been reported, potential cross-reactivity with aCoVs and the diagnostic implications are incompletely understood. Here, we probed for antibody binding against all seven hCoVs and 49 aCoVs represented as 12,924 peptides within a phage-displayed antigen library. Antibody repertoires of 269 recovered COVID-19 patients showed distinct changes compared to 260 unexposed pre-pandemic controls, not limited to binding of SARS-CoV-2 antigens but including binding to antigens from hCoVs and aCoVs with shared motifs to SARS-CoV-2. We isolated broadly reactive monoclonal antibodies from recovered COVID-19 patients that bind a shared motif of SARS-CoV-2, hCoV-OC43, hCoV-HKU1, and several aCoVs, demonstrating that interspecies cross-reactivity can be mediated by a single immunoglobulin. Employing antibody binding data against the entire CoV antigen library allowed accurate discrimination of recovered COVID-19 patients from unexposed individuals by machine learning. Leaving out SARS-CoV-2 antigens and relying solely on antibody binding to other hCoVs and aCoVs achieved equally accurate detection of SARS-CoV-2 infection. The ability to detect SARS-CoV-2 infection without knowledge of its unique antigens solely from cross-reactive antibody responses against other hCoVs and aCoVs suggests a potential diagnostic strategy for the early stage of future pandemics. Creating regularly updated antigen libraries representing the animal coronavirome can provide the basis for a serological assay already poised to identify infected individuals following a future zoonotic transmission event.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Biblioteca de Péptidos , Adolescente , Adulto , Anciano , Animales , Infecciones por Coronavirus/diagnóstico , Reacciones Cruzadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Zoonosis
14.
Nucleic Acids Res ; 48(10): 5499-5510, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365177

RESUMEN

Germline variations in immunoglobulin genes influence the repertoire of B cell receptors and antibodies, and such polymorphisms may impact disease susceptibility. However, the knowledge of the genomic variation of the immunoglobulin loci is scarce. Here, we report 25 potential novel germline IGHV alleles as inferred from rearranged naïve B cell cDNA repertoires of 98 individuals. Thirteen novel alleles were selected for validation, out of which ten were successfully confirmed by targeted amplification and Sanger sequencing of non-B cell DNA. Moreover, we detected a high degree of variability upstream of the V-REGION in the 5'UTR, L-PART1 and L-PART2 sequences, and found that identical V-REGION alleles can differ in upstream sequences. Thus, we have identified a large genetic variation not only in the V-REGION but also in the upstream sequences of IGHV genes. Our findings provide a new perspective for annotating immunoglobulin repertoire sequencing data.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas , Región Variable de Inmunoglobulina/genética , Polimorfismo Genético , Regiones no Traducidas 5' , Alelos , Codón Iniciador , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , TATA Box
15.
Nucleic Acids Res ; 48(D1): D1051-D1056, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31602484

RESUMEN

VDJbase is a publicly available database that offers easy searching of data describing the complete sets of gene sequences (genotypes and haplotypes) inferred from adaptive immune receptor repertoire sequencing datasets. VDJbase is designed to act as a resource that will allow the scientific community to explore the genetic variability of the immunoglobulin (Ig) and T cell receptor (TR) gene loci. It can also assist in the investigation of Ig- and TR-related genetic predispositions to diseases. Our database includes web-based query and online tools to assist in visualization and analysis of the genotype and haplotype data. It enables users to detect those alleles and genes that are significantly over-represented in a particular population, in terms of genotype, haplotype and gene expression. The database website can be freely accessed at https://www.vdjbase.org/, and no login is required. The data and code use creative common licenses and are freely downloadable from https://bitbucket.org/account/user/yaarilab/projects/GPHP.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genotipo , Haplotipos , Receptores Inmunológicos/genética , Recombinación V(D)J , Humanos , Anotación de Secuencia Molecular , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Programas Informáticos , Diseño de Software , Navegador Web , Flujo de Trabajo
16.
Bioinformatics ; 35(22): 4840-4842, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31173062

RESUMEN

SUMMARY: Antibody haplotype inference (chromosomal phasing) may have clinical implications for the identification of genetic predispositions to diseases. Yet, our knowledge of the genomic loci encoding for the variable regions of the antibody is only partial, mostly due to the challenge of aligning short reads from genome sequencing to these highly repetitive loci. A powerful approach to infer the content of these loci relies on analyzing repertoires of rearranged V(D)J sequences. We present here RAbHIT, an R Haplotype Antibody Inference Tool, that implements a novel algorithm to infer V(D)J haplotypes by adapting a Bayesian framework. RAbHIT offers inference of haplotype and gene deletions. It may be applied to sequences from naïve and non-naïve B-cells, sequenced by different library preparation protocols. AVAILABILITY AND IMPLEMENTATION: RAbHIT is freely available for academic use from comprehensive R archive network (CRAN) (https://cran.r-project.org/web/packages/rabhit/) under CC BY-SA 4.0 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Algoritmos , Anticuerpos , Teorema de Bayes , Mapeo Cromosómico , Genómica , Haplotipos
17.
Nat Commun ; 10(1): 628, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733445

RESUMEN

Analysis of antibody repertoires by high-throughput sequencing is of major importance in understanding adaptive immune responses. Our knowledge of variations in the genomic loci encoding immunoglobulin genes is incomplete, resulting in conflicting VDJ gene assignments and biased genotype and haplotype inference. Haplotypes can be inferred using IGHJ6 heterozygosity, observed in one third of the people. Here, we propose a robust novel method for determining VDJ haplotypes by adapting a Bayesian framework. Our method extends haplotype inference to IGHD- and IGHV-based analysis, enabling inference of deletions and copy number variations in the entire population. To test this method, we generated a multi-individual data set of naive B-cell repertoires, and found allele usage bias, as well as a mosaic, tiled pattern of deleted IGHD and IGHV genes. The inferred haplotypes may have clinical implications for genetic disease predispositions. Our findings expand the knowledge that can be extracted from antibody repertoire sequencing data.


Asunto(s)
Teorema de Bayes , Variaciones en el Número de Copia de ADN/genética , Haplotipos/genética , Alelos , Genotipo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...