Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Immunol ; 15: 1330991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410509

RESUMEN

Bronchiolitis, a viral lower respiratory infection, is the leading cause of infant hospitalization, which is associated with an increased risk for developing asthma later in life. Bronchiolitis can be caused by several respiratory viruses, such as respiratory syncytial virus (RSV), rhinovirus (RV), and others. It can also be caused by a solo infection (e.g., RSV- or RV-only bronchiolitis) or co-infection with two or more viruses. Studies have shown viral etiology-related differences between RSV- and RV-only bronchiolitis in the immune response, human microRNA (miRNA) profiles, and dominance of certain airway microbiome constituents. Here, we identified bacterial small RNAs (sRNAs), the prokaryotic equivalent to eukaryotic miRNAs, that differ between infants of the 35th Multicenter Airway Research Collaboration (MARC-35) cohort with RSV- versus RV-only bronchiolitis. We first derived reference sRNA datasets from cultures of four bacteria known to be associated with bronchiolitis (i.e., Haemophilus influenzae, Moraxella catarrhalis, Moraxella nonliquefaciens, and Streptococcus pneumoniae). Using these reference sRNA datasets, we found several sRNAs associated with RSV- and RV-only bronchiolitis in our human nasal RNA-Seq MARC-35 data. We also determined potential human transcript targets of the bacterial sRNAs and compared expression of the sRNAs between RSV- and RV-only cases. sRNAs are known to downregulate their mRNA target, we found that, compared to those associated with RV-only bronchiolitis, sRNAs associated with RSV-only bronchiolitis may relatively activate the IL-6 and IL-8 pathways and relatively inhibit the IL-17A pathway. These data support that bacteria may be contributing to inflammation differences seen in RSV- and RV-only bronchiolitis, and for the first time indicate that the potential mechanism in doing so may be through bacterial sRNAs.


Asunto(s)
Bronquiolitis , Infecciones por Enterovirus , MicroARNs , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Virus , Lactante , Humanos , Rhinovirus/genética , ARN Bacteriano , Bronquiolitis/genética , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/genética , Inmunidad
2.
J Allergy Clin Immunol ; 153(6): 1729-1735.e7, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38272372

RESUMEN

BACKGROUND: Severe bronchiolitis (ie, bronchiolitis requiring hospitalization) during infancy is a major risk factor for developing childhood asthma. However, the biological mechanisms linking these 2 conditions remain unclear. OBJECTIVE: We sought to investigate the longitudinal relationship between nasopharyngeal airway long noncoding RNA (lncRNA) in infants with severe bronchiolitis and subsequent asthma development. METHODS: In this multicenter prospective cohort study of infants with severe bronchiolitis, we performed RNA sequencing of nasopharyngeal airway lncRNAs at index hospitalization. First, we identified differentially expressed lncRNAs (DE-lncRNAs) associated with asthma development by age 6 years. Second, we investigated the associations of DE-lncRNAs with asthma-related clinical characteristics. Third, to characterize the function of DE-lncRNAs, we performed pathway analysis for mRNA targeted by DE-lncRNAs. Finally, we examined the associations of DE-lncRNAs with nasal cytokines at index hospitalization. RESULTS: Among 343 infants with severe bronchiolitis (median age, 3 months), we identified 190 DE-lncRNAs (false-discovery rate [FDR] < 0.05) associated with asthma development (eg, LINC02145, RAMP2-AS1, and PVT1). These DE-lncRNAs were associated with asthma-related clinical characteristics (FDR < 0.05), for example, respiratory syncytial virus or rhinovirus infection, infant eczema, and IgE sensitization. Furthermore, DE-lncRNAs were characterized by asthma-related pathways, including mitogen-activated protein kinase, FcɛR, and phosphatidylinositol 3-kinase (PI3K)-protein kinase B signaling pathways (FDR < 0.05). These DE-lncRNAs were also associated with nasal cytokines (eg, IL-1ß, IL-4, and IL-13; FDR < 0.05). CONCLUSIONS: In a multicenter cohort study of infants with severe bronchiolitis, we identified nasopharyngeal airway lncRNAs associated with childhood asthma development, characterized by asthma-related clinical characteristics, asthma-related pathways, and nasal cytokines. Our approach identifies lncRNAs underlying the bronchiolitis-asthma link and facilitates the early identification of infants at high risk of subsequent asthma development.


Asunto(s)
Asma , Bronquiolitis , Nasofaringe , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Asma/genética , Lactante , Bronquiolitis/genética , Masculino , Femenino , Estudios Prospectivos , Preescolar , Niño , Citocinas , Factores de Riesgo
3.
Top Spinal Cord Inj Rehabil ; 29(3): 44-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076286

RESUMEN

Background: Neurogenic bladder is associated with bacterial colonization and frequent urinary tract infections. Objectives: To explore the effects of one to two doses of intravesical Lactobacillus rhamnosus GG (LGG) on the urobiomes of adults with spinal cord injury/disease (SCI/D) who manage their bladders with intermittent catheterization (IC). Methods: This was a pilot substudy within an 18-month phase 1 clinical trial of self-instilled intravesical LGG for urinary symptoms as directed by the Self-Management Protocol using Probiotics (SMP-Pro). Urine samples were collected monthly when participants were asymptomatic. When SMP-Pro "trigger" symptoms (cloudier and/or more foul-smelling urine) occurred, urine samples were collected immediately pre-LGG instillation and 24 to 48 hours after LGG instillation. Urine was collected via a new catheter, immediately placed on ice/freezer, and processed within 12 hours. Genomic DNA was isolated, and the V4 region of the 16S rRNA bacterial gene was amplified and high throughput sequenced. Amplicon sequence variants were inferred and bacterial composition, community structure, and variation across clinical phenotypes were determined. Results: 126 urine samples were collected from 26 participants (SCI/D = 23; multiple sclerosis = 2; spina bifida = 1) between 20 and 57 years of age. The urobiomes were characterized by four dominant phyla (>1%): Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, which were comprised of six dominant genera (>3%): Escherichia/Shigella (29.1%), Klebsiella (22.4%), Proteus (15.2%), Aerococcus (6.3%), Streptococcus (6.0%), and Pluralibacter (3.0%). Post-LGG samples were associated with a decline in Escherichia/Shigella predominance (p < .001) and altered bacterial diversity (p < .05). Conclusion: Among people with SCI/D who use IC, intravesical LGG alters the bacterial composition and diversity of the urine ecosystem, potentially disrupting the uropathogenic urobiome.


Asunto(s)
Lacticaseibacillus rhamnosus , Microbiota , Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Sistema Urinario , Adulto , Humanos , ARN Ribosómico 16S , Traumatismos de la Médula Espinal/complicaciones , Vejiga Urinaria Neurogénica/terapia , Proyectos Piloto
4.
Front Microbiol ; 14: 1257276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795302

RESUMEN

The bacterial communities of the human skin impact its physiology and homeostasis, hence elucidating the composition and structure of the healthy skin bacteriome is paramount to understand how bacterial imbalance (i.e., dysbiosis) may lead to disease. To obtain an integrated view of the spatial diversity of the skin bacteriome, we surveyed from 2019 to 2023 five skin regions (belly button, behind ears, between toes, calves and forearms) with different physiological characteristics (dry, moist and sebaceous) in 129 healthy adults (579 samples - after data cleaning). Estimating bacterial diversity through 16S rRNA metataxonomics, we identified significant (p < 0.0001) differences in the bacterial relative abundance of the four most abundant phyla and 11 genera, alpha- and beta-diversity indices and predicted functional profiles (36 to 400 metabolic pathways) across skin regions and microenvironments. No significant differences, however, were observed across genders, ages, and ethnicities. As previously suggested, dry skin regions (forearms and calves) were more even, richer, and functionally distinct than sebaceous (behind ears) and moist (belly button and between toes) regions. Within skin regions, bacterial alpha- and beta-diversity also varied significantly for some of the years compared, suggesting that skin bacterial stability may be region and subject dependent. Our results, hence, confirm that the skin bacteriome varies systematically across skin regions and microenvironments and provides new insights into the internal and external factors driving bacterial diversity.

5.
EBioMedicine ; 95: 104742, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536062

RESUMEN

BACKGROUND: Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS: In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS: In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION: In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING: This study was supported by the National Institutes of Health.


Asunto(s)
Bronquiolitis , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Masculino , Infecciones por Virus Sincitial Respiratorio/genética , Estudios Prospectivos , Bronquiolitis/etiología , Hospitalización , Virus Sincitial Respiratorio Humano/genética , Rhinovirus , Gravedad del Paciente
6.
Front Allergy ; 4: 1223306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577334

RESUMEN

Around 155 million people worldwide suffer from asthma. In Chile, the prevalence of this disease in children is around 15% and has a high impact in the health system. Studies suggest that asthma is caused by multiple factors, including host genetics, antibiotic use, and the development of the airway microbiota. Here, we used 16S rRNA high-throughput sequencing to characterize the nasal and oral mucosae of 63 asthmatic and 89 healthy children (152 samples) from Santiago, Chile. We found that the nasal mucosa was dominated by a high abundance of Moraxella, Dolosigranulum, Haemophilus, Corynebacterium, Streptococcus, and Staphylococcus. In turn, the oral mucosa was characterized by a high abundance of Streptococcus, Haemophilus, Gemella, Veillonella, Neisseria, and Porphyromonas. Our results showed significantly (P < 0.001) lower alpha diversity and an over-abundance of Streptococcus (P < 0.01) in nasal samples from asthmatics compared to samples from healthy subjects. Community structure, as revealed by co-occurrence networks, showed different microbial interactions in asthmatic and healthy subjects, particularly in the nasal microbiota. The networks revealed keystone genera in each body site, including Prevotella, Leptotrichia, and Porphyromonas in the nasal microbiota, and Streptococcus, Granulicatella, and Veillonella in the oral microbiota. We also detected 51 functional pathways differentially abundant on the nasal mucosa of asthmatic subjects, although only 13 pathways were overrepresented in the asthmatic subjects (P < 0.05). We did not find any significant differences in microbial taxonomic (composition and structure) and functional diversity between the oral mucosa of asthmatic and healthy subjects. This study explores for the first time the relationships between the upper respiratory airways bacteriome and asthma in Chile. It demonstrates that the nasal cavity of children from Santiago harbors unique bacterial communities and identifies potential taxonomic and functional biomarkers of pediatric asthma.

7.
Front Microbiol ; 14: 1197135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440882

RESUMEN

Allergic rhinitis and asthma are two of the most common chronic respiratory diseases in developed countries and have become a major public health concern. Substantial evidence has suggested a strong link between respiratory allergy and upper airway dysbacteriosis, but the role of the oral bacteriota is still poorly understood. Here we used 16S rRNA massive parallel sequencing to characterize the oral bacteriome of 344 individuals with allergic rhinitis (AR), allergic rhinitis with asthma (ARAS), asthma (AS) and healthy controls (CT). Four of the most abundant (>2%) phyla (Actinobacteriota, Firmicutes, Fusobacteriota, and Proteobacteria) and 10 of the dominant genera (Actinomyces, Fusobacterium, Gemella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Streptococcus, and Veillonella) in the oral cavity differed significantly (p ≤ 0.03) between AR, ARAS or AS and CT groups. The oral bacteriome of ARAS patients showed the highest intra-group diversity, while CT showed the lowest. All alpha-diversity indices of microbial richness and evenness varied significantly (p ≤ 0.022) in ARAS vs. CT and ARAS vs. AR, but they were not significantly different in AR vs. CT. All beta-diversity indices of microbial structure (Unifrac, Bray-Curtis, and Jaccard distances) differed significantly (p ≤ 0.049) between each respiratory disease group and controls. Bacteriomes of AR and ARAS patients showed 15 and 28 upregulated metabolic pathways (PICRUSt2) mainly related to degradation and biosynthesis (p < 0.05). A network analysis (SPIEC-EASI) of AR and ARAS bacteriomes depicted simpler webs of interactions among their members than those observed in the bacteriome of CT, suggesting chronic respiratory allergic diseases may disrupt bacterial connectivity in the oral cavity. This study, therefore, expands our understanding of the relationships between the oral bacteriome and allergy-related conditions. It demonstrates for the first time that the mouth harbors distinct bacteriotas during health and allergic rhinitis (with and without comorbid asthma) and identifies potential taxonomic and functional microbial biomarkers of chronic airway disease.

8.
Eur Respir J ; 62(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321621

RESUMEN

BACKGROUND: Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS: In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS: In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION: In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.


Asunto(s)
Asma , Bronquiolitis , MicroARNs , Infecciones por Virus Sincitial Respiratorio , Humanos , Lactante , Niño , Estudios Prospectivos , Fosfatidilinositol 3-Quinasas , Bronquiolitis/genética , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/genética , Citocinas/metabolismo , ARN Mensajero/genética
9.
Front Immunol ; 14: 1187065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234152

RESUMEN

Background: Bronchiolitis is the leading cause of infant hospitalization in U.S. and is associated with increased risk for childhood asthma. Immunoglobulin E (IgE) not only plays major roles in antiviral immune responses and atopic predisposition, but also offers a potential therapeutic target. Objective: We aimed to identify phenotypes of infant bronchiolitis by using total IgE (tIgE) and virus data, to determine their association with asthma development, and examine their biological characteristics. Methods: In a multicenter prospective cohort study of 1,016 infants (age <1 year) hospitalized for bronchiolitis, we applied clustering approaches to identify phenotypes by integrating tIgE and virus (respiratory syncytial virus [RSV], rhinovirus [RV]) data at hospitalization. We examined their longitudinal association with the risk of developing asthma by age 6 years and investigated their biological characteristics by integrating the upper airway mRNA and microRNA data in a subset (n=182). Results: In infants hospitalized for bronchiolitis, we identified 4 phenotypes: 1) tIgElowvirusRSV-high, 2) tIgElowvirusRSV-low/RV, 3) tIgEhighvirusRSV-high, and 4) tIgEhighvirusRSV-low/RV phenotypes. Compared to phenotype 1 infants (resembling "classic" bronchiolitis), phenotype 4 infants (tIgEhighvirusRSV-low/RV) had a significantly higher risk for developing asthma (19% vs. 43%; adjOR, 2.93; 95% CI, 1.02-8.43; P=.046). Phenotypes 3 and 4 (tIgEhigh) had depleted type I interferon and enriched antigen presentation pathways; phenotype 4 also had depleted airway epithelium structure pathways. Conclusions: In this multicenter cohort, tIgE-virus clustering identified distinct phenotypes of infant bronchiolitis with differential risks of asthma development and unique biological characteristics.


Asunto(s)
Asma , Bronquiolitis , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Virus , Humanos , Estudios Prospectivos , Inmunoglobulina E/genética , Rhinovirus , Fenotipo
10.
Microorganisms ; 11(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985258

RESUMEN

Allergic rhinitis and asthma are major public health concerns and economic burdens worldwide. However, little is known about nasal bacteriome dysbiosis during allergic rhinitis, alone or associated with asthma comorbidity. To address this knowledge gap we applied 16S rRNA high-throughput sequencing to 347 nasal samples from participants with asthma (AS = 12), allergic rhinitis (AR = 53), allergic rhinitis with asthma (ARAS = 183) and healthy controls (CT = 99). One to three of the most abundant phyla, and five to seven of the dominant genera differed significantly (p < 0.021) between AS, AR or ARAS and CT groups. All alpha-diversity indices of microbial richness and evenness changed significantly (p < 0.01) between AR or ARAS and CT, while all beta-diversity indices of microbial structure differed significantly (p < 0.011) between each of the respiratory disease groups and controls. Bacteriomes of rhinitic and healthy participants showed 72 differentially expressed (p < 0.05) metabolic pathways each related mainly to degradation and biosynthesis processes. A network analysis of the AR and ARAS bacteriomes depicted more complex webs of interactions among their members than among those of healthy controls. This study demonstrates that the nose harbors distinct bacteriotas during health and respiratory disease and identifies potential taxonomic and functional biomarkers for diagnostics and therapeutics in asthma and rhinitis.

11.
Microb Ecol ; 85(2): 372-382, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35275230

RESUMEN

Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies' level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies' skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.


Asunto(s)
Microbiota , Perciformes , Animales , ARN Ribosómico 16S , Peces/microbiología , Arrecifes de Coral , Región del Caribe , Bacterias
12.
Front Microbiol ; 13: 916210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160194

RESUMEN

Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.

13.
Nat Commun ; 13(1): 4970, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042194

RESUMEN

Bronchiolitis is a leading cause of infant hospitalizations but its immunopathology remains poorly understood. Here we present data from 244 infants hospitalized with bronchiolitis in a multicenter prospective study, assessing the host response (transcriptome), microbial composition, and microbial function (metatranscriptome) in the nasopharyngeal airway, and associate them with disease severity. We investigate individual associations with disease severity identify host response, microbial taxonomical, and microbial functional modules by network analyses. We also determine the integrated relationship of these modules with severity. Several modules are significantly associated with risks of positive pressure ventilation use, including the host-type I interferon, neutrophil/interleukin-1, T cell regulation, microbial-branched-chain amino acid metabolism, and nicotinamide adenine dinucleotide hydrogen modules. Taken together, we show complex interplays between host and microbiome, and their contribution to disease severity.


Asunto(s)
Bronquiolitis , Microbiota , Bronquiolitis/metabolismo , Bronquiolitis/patología , Hospitalización , Humanos , Lactante , Nasofaringe/patología , Estudios Prospectivos
14.
FEMS Microbiol Ecol ; 98(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35927583

RESUMEN

Host evolutionary history is a key factor shaping the earthworm cast microbiome, although its effect can be shadowed by the earthworm's diet. To untangle dietary from taxon effects, we raised nine earthworm species on a uniform diet of cow manure and compared cast microbiome across species while controlling for diet. Our results showed that, under controlled laboratory conditions, earthworm microbiomes are species-specific, more diverse than that of the controlled diet, and mainly comprised of native bacteria (i.e. not acquired from the diet). Furthermore, diet has a medium to large convergence effect on microbiome composition since earthworms shared 16%-74% of their bacterial amplicon sequence variants (ASV). The interspecies core microbiome included 10 ASVs, while their intraspecies core microbiomes were larger and varied in ASV richness (24%-48%) and sequence abundance across earthworm species. This specificity in core microbiomes and variable degree of similarity in bacterial composition suggest that phylosymbiosis could determine earthworm microbiome assembly. However, lack of congruence between the earthworm phylogeny and the microbiome dendrogram suggests that a consistent diet fed over several generations may have weakened potential phylosymbiotic effects. Thus, cast microbiome assembly in earthworms seem to be the result of an interplay among host phylogeny and diet.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Oligoquetos , Animales , Bacterias/genética , Microbiota/genética , Oligoquetos/microbiología , Filogenia , ARN Ribosómico 16S/genética
15.
Front Microbiol ; 13: 863123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685934

RESUMEN

CRF47_BF is a circulating recombinant form (CRF) of the human immunodeficiency virus type 1 (HIV-1), the etiological agent of AIDS. CRF47_BF represents one of 19 CRFx_BFs and has a geographic focus in Spain, where it was first identified in 2010. Since its discovery, CRF47_BF has expanded considerably in Spain, predominantly through heterosexual contact (∼56% of the infections). Little is known, however, about the origin and diversity of this CRF or its epidemiological correlates, as very few samples have been available so far. This study conducts a phylogenetic analysis with representatives of all CRFx_BF sequence types along with HIV-1 M Group subtypes to validate that the CRF47_BF sequences share a unique evolutionary history. The CRFx_BF sequences cluster into a single, not well supported, clade that includes their dominant parent subtypes (B and F). This clade also includes subtype D and excludes sub-subtype F2. However, the CRF47_BF sequences all share a most recent common ancestor. Further analysis of this clade couples CRF47_BF protease-reverse transcriptase sequences and epidemiological data from an additional 87 samples collected throughout Spain, as well as additional CRF47_BF database sequences from Brazil and Spain to investigate the origin and phylodynamics of CRF47_BF. The Spanish region with the highest proportion of CRF47_BF samples in the data set was the Basque Country (43.7%) with Navarre next highest at 19.5%. We include in our analysis epidemiological data on host sex, mode of transmission, time of collection, and geographic region. The phylodynamic analysis indicates that CRF47_BF originated in Brazil around 1999-2000 and spread to Spain from Brazil in 2002-2003. The virus spread rapidly throughout Spain with an increase in population size from 2011 to 2015 and leveling off more recently. Three strongly supported clusters associated with Spanish regions (Basque Country, Navarre, and Aragon), together comprising 60.8% of the Spanish samples, were identified, one of which was also associated with transmission among men who have sex with men. The expansion in Spain of CRF47_BF, together with that of other CRFs and subtype variants of South American origin, previously reported, reflects the increasing relationship between the South American and European HIV-1 epidemics.

16.
Microorganisms ; 10(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630467

RESUMEN

Earthworms heavily modify the soil microbiome as it passes throughout their guts. However, there are no detailed studies describing changes in the composition, structure and diversity of soil microbiomes during gut transit and once they are released back to the soil as casts. To address this knowledge gap, we used 16S rRNA next-generation sequencing to characterize the microbiomes of soil, gut and casts from the earthworm Aporrectodea caliginosa. We also studied whether these three microbiomes are clearly distinct in composition or can be merged into metacommunities. A large proportion of bacteria was unique to each microbiome-soil (82%), gut (89%) and casts (75%), which indicates that the soil microbiome is greatly modified during gut transit. The three microbiomes also differed in alpha diversity, which peaked during gut transit and decreased in casts. Furthermore, gut transit also modified the structure of the soil microbiome, which clustered away from those of the earthworm gut and cast samples. However, this clustering pattern was not supported by metacommunity analysis, which indicated that soil and gut samples make up one metacommunity and cast samples another. These results have important implications for understanding the dynamics of soil microbial communities and nutrient cycles.

17.
Front Microbiol ; 13: 854423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620097

RESUMEN

The study of microbial communities or microbiotas in animals and environments is important because of their impact in a broad range of industrial applications, diseases and ecological roles. High throughput sequencing (HTS) is the best strategy to characterize microbial composition and function. Microbial profiles can be obtained either by shotgun sequencing of genomes, or through amplicon sequencing of target genes (e.g., 16S rRNA for bacteria and ITS for fungi). Here, we compared both HTS approaches at assessing taxonomic and functional diversity of bacterial and fungal communities during vermicomposting of white grape marc. We applied specific HTS workflows to the same 12 microcosms, with and without earthworms, sampled at two distinct phases of the vermicomposting process occurring at 21 and 63 days. Metataxonomic profiles were inferred in DADA2, with bacterial metabolic pathways predicted via PICRUSt2. Metagenomic taxonomic profiles were inferred in PathoScope, while bacterial functional profiles were inferred in Humann2. Microbial profiles inferred by metagenomics and metataxonomics showed similarities and differences in composition, structure, and metabolic function at different taxonomic levels. Microbial composition and abundance estimated by both HTS approaches agreed reasonably well at the phylum level, but larger discrepancies were observed at lower taxonomic ranks. Shotgun HTS identified ~1.8 times more bacterial genera than 16S rRNA HTS, while ITS HTS identified two times more fungal genera than shotgun HTS. This is mainly a consequence of the difference in resolution and reference richness between amplicon and genome sequencing approaches and databases, respectively. Our study also revealed great differences and even opposite trends in alpha- and beta-diversity between amplicon and shotgun HTS. Interestingly, amplicon PICRUSt2-imputed functional repertoires overlapped ~50% with shotgun Humann2 profiles. Finally, both approaches indicated that although bacteria and fungi are the main drivers of biochemical decomposition, earthworms also play a key role in plant vermicomposting. In summary, our study highlights the strengths and weaknesses of metagenomics and metataxonomics and provides new insights on the vermicomposting of white grape marc. Since both approaches may target different biological aspects of the communities, combining them will provide a better understanding of the microbiotas under study.

18.
J Allergy Clin Immunol ; 150(4): 806-816, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483507

RESUMEN

BACKGROUND: Severe bronchiolitis (ie, bronchiolitis requiring hospitalization) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. OBJECTIVES: This study sought to examine the integrated role of airway microbiome (both taxonomy and function) and host response in asthma development in this high-risk population. METHODS: This multicenter prospective cohort study of 244 infants with severe bronchiolitis (median age, 3 months) examined the infants' nasopharyngeal metatranscriptomes (microbiomes) and transcriptomes (hosts), as well as metabolomes at hospitalization. The longitudinal relationships investigated include (1) major bacterial species (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis), (2) microbial function, and (3) host response with risks of developing asthma by age 6 years. RESULTS: First, the abundance of S pneumoniae was associated with greater risks of asthma (P = .01), particularly in infants with nonrhinovirus infection (Pinteraction = .04). Second, of 328 microbial functional pathways that are differentially enriched by asthma development, the top pathways (eg, fatty acid and glycolysis pathways; false discovery rate [FDR] < 1 × 10-12) were driven by these 3 major species (eg, positive association of S pneumoniae with glycolysis; FDR < 0.001). These microbial functional pathways were validated with the parallel metabolome data. Third, 104 transcriptome pathways were differentially enriched (FDR < .05)-for example, downregulated interferon-α and -γ and upregulated T-cell activation pathways. S pneumoniae was associated with most differentially expressed transcripts (eg, DAGLB; FDR < 0.05). CONCLUSIONS: By applying metatranscriptomic, transcriptomic, and metabolomic approaches to a multicenter cohort of infants with bronchiolitis, this study found an interplay between major bacterial species, their function, and host response in the airway, and their longitudinal relationship with asthma development.


Asunto(s)
Asma , Bronquiolitis , Asma/genética , Asma/microbiología , Bronquiolitis/epidemiología , Bronquiolitis/genética , Niño , Ácidos Grasos , Humanos , Lactante , Interferón-alfa , Estudios Prospectivos , Streptococcus pneumoniae , Transcriptoma
19.
Gigascience ; 112022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35277961

RESUMEN

BACKGROUND: The barnacles are a group of >2,000 species that have fascinated biologists, including Darwin, for centuries. Their lifestyles are extremely diverse, from free-swimming larvae to sessile adults, and even root-like endoparasites. Barnacles also cause hundreds of millions of dollars of losses annually due to biofouling. However, genomic resources for crustaceans, and barnacles in particular, are lacking. RESULTS: Using 62× Pacific Biosciences coverage, 189× Illumina whole-genome sequencing coverage, 203× HiC coverage, and 69× CHi-C coverage, we produced a chromosome-level genome assembly of the gooseneck barnacle Pollicipes pollicipes. The P. pollicipes genome is 770 Mb long and its assembly is one of the most contiguous and complete crustacean genomes available, with a scaffold N50 of 47 Mb and 90.5% of the BUSCO Arthropoda gene set. Using the genome annotation produced here along with transcriptomes of 13 other barnacle species, we completed phylogenomic analyses on a nearly 2 million amino acid alignment. Contrary to previous studies, our phylogenies suggest that the Pollicipedomorpha is monophyletic and sister to the Balanomorpha, which alters our understanding of barnacle larval evolution and suggests homoplasy in a number of naupliar characters. We also compared transcriptomes of P. pollicipes nauplius larvae and adults and found that nearly one-half of the genes in the genome are differentially expressed, highlighting the vastly different transcriptomes of larvae and adult gooseneck barnacles. Annotation of the genes with KEGG and GO terms reveals that these stages exhibit many differences including cuticle binding, chitin binding, microtubule motor activity, and membrane adhesion. CONCLUSION: This study provides high-quality genomic resources for a key group of crustaceans. This is especially valuable given the roles P. pollicipes plays in European fisheries, as a sentinel species for coastal ecosystems, and as a model for studying barnacle adhesion as well as its key position in the barnacle tree of life. A combination of genomic, phylogenetic, and transcriptomic analyses here provides valuable insights into the evolution and development of barnacles.


Asunto(s)
Thoracica , Animales , Cromosomas , Ecosistema , Filogenia , Thoracica/genética , Thoracica/metabolismo , Transcriptoma
20.
Microb Ecol ; 83(3): 789-797, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34245329

RESUMEN

The microbiota of fish skin, the primary barrier against disease, is highly dynamic and modulated by several factors. In fish aquaculture, disease outbreaks occur mainly during early-life stages, with associated high economic losses. Antibiotic treatments sometimes remain the best option to control bacterial diseases, despite many reported negative impacts of its use on fish and associated microbiota. Notwithstanding, studies monitoring the effects of disease and antibiotic treatment on the microbiota of fingerlings are scarce. We sequenced the bacterial 16S rRNA V4 gene region using a metabarcoding approach to assess the impact of a mixed infection with Photobacterium damselae ssp. piscicida and Vibrio harveyi and subsequent antibiotic treatment with flumequine, on the skin microbiota of farmed seabass (Dicentrarchus labrax) fingerlings. Both infection and antibiotic treatment led to a significant increase in bacterial diversity and core microbial communities and impacted microbiome structure. Dysbiosis was confirmed by changes in the abundance of potential pathogenic and opportunistic bacterial taxa. Skin bacterial metabolic function was also significantly affected by flumequine administration, suggesting a detriment to fish skin health. Our results add to an increasing body of literature, showing how fish microbiome response to infection and antibiotics cannot be easily predicted.


Asunto(s)
Lubina , Enfermedades de los Peces , Microbiota , Animales , Antibacterianos/farmacología , Acuicultura/métodos , Lubina/genética , Lubina/microbiología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Photobacterium/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...