RESUMEN
Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.
Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Transformación Genética , Biolística/métodos , Biosíntesis de Proteínas , Genoma Mitocondrial/genéticaRESUMEN
Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.
Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Ratas , Animales , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/metabolismo , Endorribonucleasas/farmacología , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Glucosa/metabolismo , Autofagia , Infarto de la Arteria Cerebral Media , Modelos Teóricos , Accidente Cerebrovascular/tratamiento farmacológicoRESUMEN
Mitochondrial translation is an intricate process involving both general and mRNA-specific factors. In addition, in the yeast Saccharomyces cerevisiae, translation of mitochondrial mRNAs is coupled to assembly of nascent polypeptides into the membrane. ARG8m is a reporter gene widely used to study the mechanisms of yeast mitochondrial translation. This reporter is a recodified gene that uses the mitochondrial genetic code and is inserted at the desired locus in the mitochondrial genome. After deletion of the endogenous nuclear gene, this reporter produces Arg8, an enzyme necessary for arginine biosynthesis. Since Arg8 is a soluble protein with no relation to oxidative phosphorylation, it is a reliable reporter to study mitochondrial mRNAs translation and dissect translation form assembly processes. In this chapter, we explain how to insert the ARG8m reporter in the desired spot in the mitochondrial DNA, how to analyze Arg8 synthesis inside mitochondria, and how to follow steady-state levels of the protein. We also explain how to use it to find spontaneous suppressors of translation defects.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biosíntesis de Proteínas , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismoRESUMEN
Mitochondrial bc 1 complex from yeast has 10 subunits, but only cytochrome b (Cytb) subunit is encoded in the mitochondrial genome. Cytb has eight transmembrane helices containing two hemes b for electron transfer. Cbp3 and Cbp6 assist Cytb synthesis, and together with Cbp4 induce Cytb hemylation. Subunits Qcr7/Qcr8 participate in the first steps of assembly, and lack of Qcr7 reduces Cytb synthesis through an assembly-feedback mechanism involving Cbp3/Cbp6. Because Qcr7 resides near the Cytb carboxyl region, we wondered whether this region is important for Cytb synthesis/assembly. Although deletion of the Cytb C-region did not abrogate Cytb synthesis, the assembly-feedback regulation was lost, so Cytb synthesis was normal even if Qcr7 was missing. Mutants lacking the Cytb C-terminus were non-respiratory because of the absence of fully assembled bc 1 complex. By performing complexome profiling, we showed the existence of aberrant early-stage subassemblies in the mutant. In this work, we demonstrate that the C-terminal region of Cytb is critical for regulation of Cytb synthesis and bc 1 complex assembly.
Asunto(s)
Citocromos b , Proteínas de Saccharomyces cerevisiae , Citocromos b/genética , Citocromos b/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo III de Transporte de Electrones , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Proteínas Portadoras , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriales/genéticaRESUMEN
The synthesis of Cox1, the conserved catalytic-core subunit of Complex IV, a multisubunit machinery of the mitochondrial oxidative phosphorylation (OXPHOS) system under environmental stress, has not been sufficiently addressed. In this study, we show that the putative YihA superfamily GTPase, Mrx8, is a bona fide mitochondrial protein required for Cox1 translation initiation and elongation during suboptimal growth condition at 16°C. Mrx8 was found in a complex with mitochondrial ribosomes, consistent with a role in protein synthesis. Cells expressing mutant Mrx8 predicted to be defective in guanine nucleotide binding and hydrolysis were compromised for robust cellular respiration. We show that the requirement of Pet309 and Mss51 for cellular respiration is not bypassed by overexpression of Mrx8 and vice versa. Consistently the ribosomal association of Mss51 is independent of Mrx8. Significantly, we find that GTPBP8, the human orthologue, complements the loss of cellular respiration in Δmrx8 cells and GTPBP8 localizes to the mitochondria in mammalian cells. This strongly suggests a universal role of the MRX8 family of proteins in regulating mitochondrial function.
Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , GTP Fosfohidrolasas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Transcripción/metabolismoRESUMEN
Altered protein homeostasis is associated with neurodegenerative diseases and acute brain injury induced under energy depletion conditions such as ischemia. The accumulation of damaged or unfolded proteins triggers the unfolded protein response (UPR), which can act as a homeostatic response or lead to cell death. However, the factors involved in turning and adaptive response into a cell death mechanism are still not well understood. Several mechanisms leading to brain injury induced by severe hypoglycemia have been described but the contribution of the UPR has been poorly studied. Cell responses triggered during both the hypoglycemia and the glucose reinfusion periods can contribute to neuronal death. Therefore, we have investigated the activation dynamics of the PERK and the IRE1α branches of the UPR and their contribution to neuronal death in a model of glucose deprivation (GD) and glucose reintroduction (GR) in cortical neurons. Results show a rapid activation of the PERK/p-eIF2α/ATF4 pathway leading to protein synthesis inhibition during GD, which contributes to neuronal adaptation, however, sustained blockade of protein synthesis during GR promotes neuronal death. On the other hand, IRE1α activation occurs early during GD due to its interaction with BAK/BAX, while ASK1 is recruited to IRE1α activation complex during GR promoting the nuclear translocation of JNK and the upregulation of Chop. Most importantly, results show that IRE1α RNase activity towards its splicing target Xbp1 mRNA occurs late after GR, precluding a homeostatic role. Instead, IRE1α activity during GR drives neuronal death by positively regulating ASK1/JNK activity through the degradation of 14-3-3 θ mRNA, a negative regulator of ASK and an adaptor protein highly expressed in brain, implicated in neuroprotection. Collectively, results describe a novel regulatory mechanism of cell death in neurons, triggered by the downregulation of 14-3-3 θ mRNA induced by the IRE1α branch of the UPR.
RESUMEN
Selection of the translation initiation site (TIS) is a crucial step during translation. In the 1980s Marylin Kozak performed key studies on vertebrate mRNAs to characterize the optimal TIS consensus sequence, the Kozak motif. Within this motif, conservation of nucleotides in crucial positions, namely a purine at -3 and a G at +4 (where the A of the AUG is numbered +1), is essential for TIS recognition. Ever since its characterization the Kozak motif has been regarded as the optimal sequence to initiate translation in all eukaryotes. We revisit here published in silico data on TIS consensus sequences, as well as experimental studies from diverse eukaryotic lineages, and propose that, while the -3A/G position is universally conserved, the remaining variability of the consensus sequences enables their classification as optimal, strong, and moderate TIS sequences.
Asunto(s)
Codón Iniciador/fisiología , Eucariontes/fisiología , Motivos de Nucleótidos , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Mensajero/metabolismoRESUMEN
Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive â¼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.
Asunto(s)
Complejo IV de Transporte de Electrones/química , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Arabidopsis/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Kluyveromyces/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Oryza/metabolismo , Fosforilación Oxidativa , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismoRESUMEN
Deletion of the yeast mitochondrial gene COX2, encoding subunit 2 (mtCox2) of cytochrome c oxidase (CcO), results in a respiratory-incompetent Δcox2 strain. For a cytosol-synthesized Cox2 to restore respiratory growth, it must carry the W56R mutation (cCox2W56R). Nevertheless, only a fraction of cCox2W56R is matured in mitochondria, allowing â¼60% steady-state accumulation of CcO. This can be attributed either to the point mutation or to an inefficient biogenesis of cCox2W56R. We generated a strain expressing the mutant protein mtCox2W56R inside mitochondria which should follow the canonical biogenesis of mitochondria-encoded Cox2. This strain exhibited growth rates, CcO steady-state levels, and CcO activity similar to those of the wild type; therefore, the efficiency of Cox2 biogenesis is the limiting step for successful allotopic expression. Upon coexpression of cCox2W56R and mtCox2, each protein assembled into CcO independently from its genetic origin, resulting in a mixed population of CcO with most complexes containing the mtCox2 version. Notably, the presence of the mtCox2 enhances cCox2W56R incorporation. We provide proof of principle that an allotopically expressed Cox2 may complement a phenotype due to a mutant mitochondrial COX2 gene. These results are relevant to developing a rational design of genes for allotopic expression intended to treat human mitochondrial diseases.
RESUMEN
Cytochrome b (Cytb) is the only mitochondrial encoded subunit from the bc1 complex. Cbp3 and Cbp6 are chaperones necessary for translation of the COB mRNA and Cytb hemylation. Here we demonstrate that their role in translation is dispensable in some laboratory strains, whereas their role in Cytb hemylation seems to be universally conserved. BY4742 yeast requires Cbp3 and Cbp6 for efficient COB mRNA translation, whereas the D273-10b strain synthesizes Cytb at wildtype levels in the absence of Cbp3 and Cbp6. Steady-state levels of Cytb are close to wildtype in mutant D273-10b cells, and Cytb forms non-functional, supercomplex-like species with cytochrome c oxidase, in which at least core 1, cytochrome c1, and Rieske iron-sulfur subunits are present. We demonstrated that Cbp3 interacts with the mitochondrial ribosome and with the COB mRNA in both BY4742 and D273-10b strains. The polymorphism(s) causing the differential function of Cbp3, Cbp6, and the assembly feedback regulation of Cytb synthesis is of nuclear origin rather than mitochondrial, and Smt1, a COB mRNA-binding protein, does not seem to be involved in the observed differential phenotype. Our results indicate that the essential role of Cbp3 and Cbp6 is to assist Cytb hemylation and demonstrate that in the absence of heme b, Cytb can form non-functional supercomplexes with cytochrome c oxidase. Our observations support that an additional protein or proteins are involved in Cytb synthesis in some yeast strains.
Asunto(s)
Citocromos b/biosíntesis , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citocromos b/genética , Citocromos c1/genética , Citocromos c1/metabolismo , Proteínas de la Membrana/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5Î-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.
Asunto(s)
ARN Helicasas DEAD-box/fisiología , Ribosomas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Cytochrome c oxidase (CcO) is the last electron acceptor in the respiratory chain. The CcO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CcO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of COX1 mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial COX1 gene from Saccharomyces cerevisiae, we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CcO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CcO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome b and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CcO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CcO biogenesis and that it is important for supercomplex formation/stability.
Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Cytochrome c oxidase assembly requires the synthesis of the mitochondria-encoded core subunits, Cox1, Cox2, and Cox3. In yeast, Pet54 protein is required to activate translation of the COX3 mRNA and to process the aI5ß intron on the COX1 transcript. Here we report a third, novel function of Pet54 on Cox1 synthesis. We observed that Pet54 is necessary to achieve an efficient Cox1 synthesis. Translation of the COX1 mRNA is coupled to the assembly of cytochrome c oxidase by a mechanism that involves Mss51. This protein activates translation of the COX1 mRNA by acting on the COX1 5'-UTR, and, in addition, it interacts with the newly synthesized Cox1 protein in high molecular weight complexes that include the factors Coa3 and Cox14. Deletion of Pet54 decreased Cox1 synthesis, and, in contrast to what is commonly observed for other assembly mutants, double deletion of cox14 or coa3 did not recover Cox1 synthesis. Our results show that Pet54 is a positive regulator of Cox1 synthesis that renders Mss51 competent as a translational activator of the COX1 mRNA and that this role is independent of the assembly feedback regulatory loop of Cox1 synthesis. Pet54 may play a role in Mss51 hemylation/conformational change necessary for translational activity. Moreover, Pet54 physically interacts with the COX1 mRNA, and this binding was independent of the presence of Mss51.
Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 5'/fisiología , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5'-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.
Asunto(s)
Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Factores de Iniciación de Péptidos/genética , ARN de Hongos/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/genéticaRESUMEN
Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.
Asunto(s)
Citoplasma/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Mutación Puntual/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Respiración de la Célula/fisiología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Inmunoensayo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Electroforesis en Gel de Poliacrilamida Nativa , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en TándemRESUMEN
The synthesis of the heme a cofactor used in cytochrome c oxidase (CcO) is dependent on the sequential action of heme o synthase (Cox10) and heme a synthase (Cox15). The active state of Cox10 appears to be a homo-oligomeric complex, and formation of this complex is dependent on the newly synthesized CcO subunit Cox1 and the presence of an early Cox1 assembly intermediate. Cox10 multimerization is triggered by progression of Cox1 from the early assembly intermediate to downstream intermediates. The CcO assembly factor Coa2 appears important in coupling the presence of newly synthesized Cox1 to Cox10 oligomerization. Cells lacking Coa2 are impaired in Cox10 complex formation as well as the formation of a high mass Cox15 complex. Increasing Cox1 synthesis in coa2Δ cells restores respiratory function if Cox10 protein levels are elevated. The C-terminal segment of Cox1 is important in triggering Cox10 oligomerization. Expression of the C-terminal 54 residues of Cox1 appended to a heterologous matrix protein leads to efficient Cox10 complex formation in coa2Δ cells, but it fails to induce Cox15 complex formation. The state of Cox10 was evaluated in mutants, which predispose human patients to CcO deficiency and the neurological disorder Leigh syndrome. The presence of the D336V mutation in the yeast Cox10 backbone results in a catalytically inactive enzyme that is fully competent to oligomerize. Thus, Cox10 oligomerization and catalytic activation are separate processes and can be uncoupled.
Asunto(s)
Transferasas Alquil y Aril/metabolismo , Biopolímeros/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cartilla de ADN , Complejo IV de Transporte de Electrones/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismoRESUMEN
Synthesis of the largest cytochrome c oxidase (CcO) subunit, Cox1, on yeast mitochondrial ribosomes is coupled to assembly of CcO. The translational activator Mss51 is sequestered in early assembly intermediate complexes by an interaction with Cox14 that depends on the presence of newly synthesized Cox1. If CcO assembly is prevented, the level of Mss51 available for translational activation is reduced. We deleted the C-terminal 11 or 15 residues of Cox1 by site-directed mutagenesis of mtDNA. Although these deletions did not prevent respiratory growth of yeast, they eliminated the assembly-feedback control of Cox1 synthesis. Furthermore, these deletions reduced the strength of the Mss51-Cox14 interaction as detected by co-immunoprecipitation, confirming the importance of the Cox1 C-terminal residues for Mss51 sequestration. We surveyed a panel of mutations that block CcO assembly for the strength of their effect on Cox1 synthesis, both by pulse labeling and expression of the ARG8(m) reporter fused to COX1. Deletion of the nuclear gene encoding Cox6, one of the first subunits to be added to assembling CcO, caused the most severe reduction in Cox1 synthesis. Deletion of the C-terminal 15 amino acids of Cox1 increased Cox1 synthesis in the presence of each of these mutations, except pet54. Our data suggest a novel activity of Pet54 required for normal synthesis of Cox1 that is independent of the Cox1 C-terminal end.
Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiologíaRESUMEN
The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.
Asunto(s)
Proteínas de Transporte de Fosfato/metabolismo , Canales de Potasio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Mersalil/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Proteínas de Transporte de Fosfato/antagonistas & inhibidores , Fosfatos/metabolismo , Polietilenglicoles/farmacología , Canales de Potasio/química , Canales de Potasio/deficiencia , Canales de Potasio/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Vanadatos/farmacología , Canales Aniónicos Dependientes del Voltaje/metabolismoRESUMEN
Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.
Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Regulación Fúngica de la Expresión Génica/fisiología , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Regiones no Traducidas 5' , Complejo IV de Transporte de Electrones/genética , Genes Reporteros , Genes Sintéticos , Homeostasis , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Biosíntesis de Proteínas/fisiología , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/fisiología , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genéticaRESUMEN
Human mitochondrial DNA (mtDNA) codes for 13 polypeptides which constitute the central core of the oxidative phosphorylation (OXPHOS) complexes. The machinery for mitochondrial protein synthesis has a dual origin: a full set of tRNAs, as well as the 12S and 16S rRNAs are encoded in the mitochondrial genome, while most factors necessary for translation are encoded by nuclear genes. The mitochondrial translation apparatus is highly specialized in expressing membrane proteins, and couples the synthesis of proteins to the insertion into the mitochondrial inner membrane. In recent years it has become clear that defects of mitochondrial translation and protein assembly cause several mitochondrial disorders. Since direct studies on protein synthesis in human mitochondria are still a relatively difficult task, we owe our current knowledge of this field to the large amount of genetic and biochemical studies performed in the yeast Saccharomyces cerevisiae. These studies have allowed the identification of several genes involved in mitochondrial protein synthesis and assembly, and have provided insights into the conserved mechanisms of mitochondrial gene expression. In the present review we will discuss the most recent advances in the understanding of the mechanisms and factors that govern mammalian mitochondrial translation/protein insertion, as well as known pathologies associated with them.