Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8040, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086799

RESUMEN

Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by ß-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in ß-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient ß-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratas , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Insulina/metabolismo , Metilación de ADN , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Epigénesis Genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción Forkhead/metabolismo
2.
Diabetes Res Clin Pract ; 202: 110807, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356726

RESUMEN

AIMS: Despite metformin being used as first-line pharmacological therapy for type 2 diabetes, its underlying mechanisms remain unclear. We aimed to determine whether metformin altered DNA methylation in newly-diagnosed individuals with type 2 diabetes. METHODS AND RESULTS: We found that metformin therapy is associated with altered methylation of 26 sites in blood from Scandinavian discovery and replication cohorts (FDR < 0.05), using MethylationEPIC arrays. The majority (88%) of these 26 sites were hypermethylated in patients taking metformin for âˆ¼ 3 months compared to controls, who had diabetes but had not taken any diabetes medication. Two of these blood-based methylation markers mirrored the epigenetic pattern in muscle and adipose tissue (FDR < 0.05). Four type 2 diabetes-associated SNPs were annotated to genes with differential methylation between metformin cases and controls, e.g., GRB10, RPTOR, SLC22A18AS and TH2LCRR. Methylation correlated with expression in human islets for two of these genes. Three metformin-associated methylation sites (PKNOX2, WDTC1 and MICB) partially mediate effects of metformin on follow-up HbA1c levels. When combining methylation of these three sites into a score, which was used in a causal mediation analysis, methylation was suggested to mediate up to 32% of metformin's effects on HbA1c. CONCLUSION: Metformin-associated alterations in DNA methylation partially mediates metformin's antidiabetic effects on HbA1c in newly-diagnosed individuals with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metilación de ADN , Hemoglobina Glucada
4.
Clin Epigenetics ; 15(1): 21, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36765383

RESUMEN

BACKGROUND: Accumulation of saturated fatty acids (SFAs) in the liver is known to induce hepatic steatosis and inflammation causing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Although SFAs have been shown to affect the epigenome in whole blood, pancreatic islets, and adipose tissue in humans, and genome-wide DNA methylation studies have linked epigenetic changes to NAFLD and NASH, studies focusing on the association of SFAs and DNA methylation in human liver are missing. We, therefore, investigated whether human liver SFA content associates with DNA methylation and tested if SFA-linked alterations in DNA methylation associate with NAFLD-related clinical phenotypes in obese individuals. RESULTS: We identified DNA methylation (Infinium HumanMethylation450 BeadChip) of 3169 CpGs to be associated with liver total SFA content (q-value < 0.05) measured using proton NMR spectroscopy in participants of the Kuopio Obesity Surgery Study (n = 51; mean ± SD:49.3 ± 8.5 years old; BMI:43.7 ± 6.2 kg/m2). Of these 3169 sites, 797 overlapped with previously published NASH-associated CpGs (NASH-SFA), while 2372 CpGs were exclusively associated with SFA (Only-SFA). The corresponding annotated genes of these only-SFA CpGs were found to be enriched in pathways linked to satiety and hunger. Among the 54 genes mapping to these enriched pathways, DNA methylation of CpGs mapping to PRKCA and TSPO correlated with their own mRNA expression (HumanHT-12 Expression BeadChip). In addition, DNA methylation of another ten of these CpGs correlated with the mRNA expression of their neighboring genes (p value < 0.05). The proportion of CpGs demonstrating a correlation of DNA methylation with plasma glucose was higher in NASH-SFA and only-SFA groups, while the proportion of significant correlations with plasma insulin was higher in only-NASH and NASH-SFA groups as compared to all CpGs on the Illumina 450 K array (Illumina, San Diego, CA, USA). CONCLUSIONS: Our results suggest that one of the mechanisms how SFA could contribute to metabolic dysregulation in NAFLD is at the level of DNA methylation. We further propose that liver SFA-related DNA methylation profile may contribute more to hyperglycemia, while insulin-related methylation profile is more linked to NAFLD or NASH. Further research is needed to elucidate the molecular mechanisms behind these observations.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Adulto , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metilación de ADN , Hígado/metabolismo , Obesidad/complicaciones , Obesidad/genética , Ácidos Grasos/metabolismo , Insulina/genética , ADN/metabolismo , ARN Mensajero/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
5.
Hum Mol Genet ; 32(11): 1875-1887, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36752523

RESUMEN

Dysregulation of circulating lipids is a central element for the metabolic syndrome. However, it is not well established whether human subcutaneous adipose tissue is affected by or affect circulating lipids through epigenetic mechanisms. Hence, our aim was to investigate the association between circulating lipids and DNA methylation levels in human adipose tissue. DNA methylation and gene expression were analysed genome-wide in subcutaneous adipose tissue from two different cohorts, including 85 men and 93 women, respectively. Associations between DNA methylation and circulating levels of triglycerides, low-density lipoprotein, high-density lipoprotein and total cholesterol were analysed. Causal mediation analyses tested if adipose tissue DNA methylation mediates the effects of triglycerides on gene expression or insulin resistance. We found 115 novel associations between triglycerides and adipose tissue DNA methylation, e.g. in the promoter of RFS1, ARID2 and HOXA5 in the male cohort (P ≤ 1.1 × 10-7), and 63 associations, e.g. within the gene body of PTPRN2 and COL6A3 in the female cohort. We further connected these findings to altered mRNA expression levels in adipose tissue (e.g. HOXA5, IL11 and FAM45B). Interestingly, there was no overlap between methylation sites associated with triglycerides in men and the sites found in women, which points towards sex-specific effects of triglycerides on the epigenome. Finally, a causal mediation analysis provided support for adipose tissue DNA methylation as a partial mediating factor between circulating triglycerides and insulin resistance. This study identified novel epigenetic alterations in adipose tissue associated with circulating lipids. Identified epigenetic changes seem to mediate effects of triglycerides on insulin resistance.


Asunto(s)
Metilación de ADN , Resistencia a la Insulina , Humanos , Masculino , Femenino , Metilación de ADN/genética , Triglicéridos/genética , Triglicéridos/metabolismo , Resistencia a la Insulina/genética , Epigénesis Genética/genética , Tejido Adiposo/metabolismo
6.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656641

RESUMEN

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina/genética , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción PAX5/metabolismo
7.
Life Sci ; 307: 120854, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917939

RESUMEN

AIMS: Synthetic glucocorticoids, including dexamethasone (DEX), are clinically prescribed due to their immunoregulatory properties. In excess they can perturb glucose homeostasis, with individuals predisposed to glucose intolerance more sensitive to these negative effects. While DEX is known to negatively impact ß-cell function, it is unclear how. Hence, our aim was to investigate the effect of DEX on ß-cell function, both alone and in combination with a diabetogenic milieu in the form of elevated glucose and palmitate. MAIN METHODS: Human pancreatic EndoC-ßH1 cells were cultured in the presence of high glucose and palmitate (glucolipotoxicity) and/or a pharmacological concentration of DEX, before functional and molecular analyses. KEY FINDINGS: Either treatment alone resulted in reduced insulin content and secretion, while the combination of DEX and glucolipotoxicity promoted a strong synergistic effect. These effects were associated with reduced insulin biosynthesis, likely due to downregulation of PDX1, MAFA, and the proinsulin converting enzymes, as well as reduced ATP response upon glucose stimulation. Genome-wide DNA methylation analysis found changes on PDE4D, MBNL1 and TMEM178B, all implicated in ß-cell function, after all three treatments. DEX alone caused very strong demethylation of the glucocorticoid-regulated gene ZBTB16, also known to influence the ß-cell, while the combined treatment caused altered methylation of many known ß-cell regulators and diabetes candidate genes. SIGNIFICANCE: DEX treatment and glucolipotoxic conditions separately alter the ß-cell epigenome and function. The combination of both treatments exacerbates these changes, showing that caution is needed when prescribing potent glucocorticoids in patients with dysregulated metabolism.


Asunto(s)
Glucocorticoides , Células Secretoras de Insulina , Adenosina Trifosfato/metabolismo , Dexametasona/metabolismo , Dexametasona/toxicidad , Epigenoma , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacología , Proinsulina/metabolismo , Proinsulina/farmacología
8.
Diabetes Care ; 45(7): 1621-1630, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35607770

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications. RESEARCH DESIGN AND METHODS: Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts. Subgroup-unique MRSs were built, including top subgroup-unique DNA methylation sites. Regression models examined whether MRSs associated with subgroups and future complications. RESULTS: We found epigenetic differences between the T2D subgroups. Subgroup-unique MRSs were significantly different in those patients allocated to each respective subgroup compared with the combined group of all other subgroups. These associations were validated in an independent replication cohort, showing that subgroup-unique MRSs associate with individual subgroups (odds ratios 1.6-6.1 per 1-SD increase, P < 0.01). Subgroup-unique MRSs were also associated with future complications. Higher MOD-MRS was associated with lower risk of cardiovascular (hazard ratio [HR] 0.65, P = 0.001) and renal (HR 0.50, P < 0.001) disease, whereas higher SIRD-MRS and MARD-MRS were associated with an increased risk of these complications (HR 1.4-1.9 per 1-SD increase, P < 0.01). Of 95 methylation sites included in subgroup-unique MRSs, 39 were annotated to genes previously linked to diabetes-related traits, including TXNIP and ELOVL2. Methylation in the blood of 18 subgroup-unique sites mirrors epigenetic patterns in tissues relevant for T2D, muscle and adipose tissue. CONCLUSIONS: We identified differential epigenetic patterns between T2D subgroups that associated with future diabetic complications. These data support a reclassification of diabetes and the need for precision medicine in T2D subgroups.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , ADN , Metilación de ADN/genética , Complicaciones de la Diabetes/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Epigenómica , Humanos , Insulina/genética , Resistencia a la Insulina/genética
9.
Diabetes ; 70(10): 2402-2418, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315727

RESUMEN

The prevalence of type 2 diabetes (T2D) is increasing worldwide, but current treatments have limitations. miRNAs may play a key role in the development of T2D and can be targets for novel therapies. Here, we examined whether T2D is associated with altered expression and DNA methylation of miRNAs using adipose tissue from 14 monozygotic twin pairs discordant for T2D. Four members each of the miR-30 and let-7-families were downregulated in adipose tissue of subjects with T2D versus control subjects, which was confirmed in an independent T2D case-control cohort. Further, DNA methylation of five CpG sites annotated to gene promoters of differentially expressed miRNAs, including miR-30a and let-7a-3, was increased in T2D versus control subjects. Luciferase experiments showed that increased DNA methylation of the miR-30a promoter reduced its transcription in vitro. Silencing of miR-30 in adipocytes resulted in reduced glucose uptake and TBC1D4 phosphorylation; downregulation of genes involved in demethylation and carbohydrate/lipid/amino acid metabolism; and upregulation of immune system genes. In conclusion, T2D is associated with differential DNA methylation and expression of miRNAs in adipose tissue. Downregulation of the miR-30 family may lead to reduced glucose uptake and altered expression of key genes associated with T2D.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , Gemelos Monocigóticos , Células 3T3-L1 , Tejido Adiposo/patología , Anciano , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Estudios de Casos y Controles , Células Cultivadas , Estudios de Cohortes , Metilación de ADN , Dinamarca , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Enfermedades en Gemelos/genética , Femenino , Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Gigantismo/genética , Gigantismo/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Ratones , MicroARNs/metabolismo , Persona de Mediana Edad , Suecia , Gemelos Monocigóticos/genética
10.
Epigenomics ; 13(12): 919-925, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33947200

RESUMEN

Aim: Statins lower cholesterol and reduce the risk of cardiovascular disease. However, the exact mechanisms of statins remain unknown. We investigated whether statin therapy associates with epigenetics in Type 2 diabetes (T2D) patients. Materials & methods: DNA methylation was analyzed in blood from newly diagnosed T2D patients in All New Diabetics in Scania (ANDIS) and a replication cohort All New Diabetics in Uppsala County (ANDiU). Results: Seventy-nine sites were differentially methylated between cases on statins and controls (false discovery rate <5%) in ANDIS. These include previously statin-associated methylation sites annotated to DHCR24 (cg17901584), ABCG1 (cg27243685) and SC4MOL (cg05119988). Differential methylation of two sites related to cholesterol biosynthesis and immune response, cg17901584 (DHCR24) and cg23011663 (ARIH2), were replicated in ANDiU. Conclusion: Statin therapy associates with epigenetic modifications in T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Biomarcadores , Metilación de ADN , Epigenómica , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino
11.
Nat Commun ; 12(1): 2431, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893273

RESUMEN

Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Diferenciación Celular/genética , Diabetes Mellitus Tipo 2/genética , Epigenómica/métodos , Mioblastos/metabolismo , Células Madre/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Proteínas Relacionadas con la Autofagia/deficiencia , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Epigénesis Genética/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Desarrollo de Músculos/genética , Proteínas de Transporte Vesicular/deficiencia
12.
Diabetes ; 70(4): 854-866, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33431374

RESUMEN

Maternal obesity may lead to epigenetic alterations in the offspring and might thereby contribute to disease later in life. We investigated whether a lifestyle intervention in pregnant women with obesity is associated with epigenetic variation in cord blood and body composition in the offspring. Genome-wide DNA methylation was analyzed in cord blood from 208 offspring from the Treatment of Obese Pregnant women (TOP)-study, which includes pregnant women with obesity randomized to lifestyle interventions comprised of physical activity with or without dietary advice versus control subjects (standard of care). DNA methylation was altered at 379 sites, annotated to 370 genes, in cord blood from offspring of mothers following a lifestyle intervention versus control subjects (false discovery rate [FDR] <5%) when using the Houseman reference-free method to correct for cell composition, and three of these sites were significant based on Bonferroni correction. These 370 genes are overrepresented in gene ontology terms, including response to fatty acids and adipose tissue development. Offspring of mothers included in a lifestyle intervention were born with more lean mass compared with control subjects. Methylation at 17 sites, annotated to, for example, DISC1, GBX2, HERC2, and HUWE1, partially mediates the effect of the lifestyle intervention on lean mass in the offspring (FDR <5%). Moreover, 22 methylation sites were associated with offspring BMI z scores during the first 3 years of life (P < 0.05). Overall, lifestyle interventions in pregnant women with obesity are associated with epigenetic changes in offspring, potentially influencing the offspring's lean mass and early growth.


Asunto(s)
Metilación de ADN/fisiología , Sangre Fetal/metabolismo , Obesidad/genética , Peso al Nacer/fisiología , Composición Corporal/genética , Composición Corporal/fisiología , Índice de Masa Corporal , Metilación de ADN/genética , Ejercicio Físico/fisiología , Femenino , Humanos , Estilo de Vida , Embarazo , Mujeres Embarazadas
13.
Liver Int ; 41(4): 754-763, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33219609

RESUMEN

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. METHODS & RESULTS: A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2 ; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. CONCLUSIONS: We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.


Asunto(s)
Cirugía Bariátrica , Enfermedad del Hígado Graso no Alcohólico , Adulto , Aminoácidos de Cadena Ramificada , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas
14.
Sci Transl Med ; 12(561)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938793

RESUMEN

Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Preparaciones Farmacéuticas , Glucemia , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico
15.
Endocr Res ; 45(1): 58-71, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31566019

RESUMEN

Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells.Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements.After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake.Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.


Asunto(s)
Regulación hacia Abajo/genética , Epigenoma/genética , Recién Nacido de Bajo Peso , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Transcriptoma/genética , Adulto , Humanos , Masculino , Adulto Joven
16.
Diabetes ; 68(12): 2315-2326, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31506343

RESUMEN

Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Epigenoma , Adulto , Anciano , Glucemia , Diabetes Mellitus Tipo 2/epidemiología , Inglaterra/epidemiología , Epigenómica , Femenino , Estudios de Asociación Genética , Humanos , Incidencia , Masculino , Persona de Mediana Edad
17.
EBioMedicine ; 47: 341-351, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31439477

RESUMEN

BACKGROUND: Individuals born with low birth weight (LBW) have an increased risk of metabolic diseases when exposed to diets rich in calories and fat but may respond to fasting in a metabolically preferential manner. We hypothesized that impaired foetal growth is associated with differential regulation of gene expression and epigenetics in metabolic tissues in response to fasting in young adulthood. METHODS: Genome-wide expression and DNA methylation were analysed in subcutaneous adipose tissue (SAT) and skeletal muscle from LBW and normal birth weight (NBW) men after 36 h fasting and after an isocaloric control study using microarrays. FINDINGS: Transcriptome analyses revealed that expression of genes involved in oxidative phosphorylation (OXPHOS) and other key metabolic pathways were lower in SAT from LBW vs NBW men after the control study, but paradoxically higher in LBW vs NBW men after 36 h fasting. Thus, fasting was associated with downregulated OXPHOS and metabolic gene sets in NBW men only. Likewise, in skeletal muscle only NBW men downregulated OXPHOS genes with fasting. Few epigenetic changes were observed in SAT and muscle between the groups. INTERPRETATION: Our results provide insights into the molecular mechanisms in muscle and adipose tissue governing a differential metabolic response in subjects with impaired foetal growth when exposed to fasting in adulthood. The results support the concept of developmental programming of metabolic diseases including type 2 diabetes. FUND: The Swedish Research Council, the Danish Council for Strategic Research, the Novo Nordisk foundation, the Swedish Foundation for Strategic Research, The European Foundation for the Study of Diabetes, The EU 6th Framework EXGENESIS grant and Rigshospitalet.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/genética , Ayuno , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Adulto , Sitios de Unión , Biomarcadores , Peso al Nacer , Metilación de ADN , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Modelos Biológicos , Motivos de Nucleótidos , Unión Proteica , Factores Sexuales , Factores de Transcripción , Transcripción Genética , Adulto Joven
18.
Diabetes ; 68(10): 1965-1974, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31420409

RESUMEN

Type 2 diabetes (T2D) is characterized by insufficient insulin secretion and elevated glucose levels, often in combination with high levels of circulating fatty acids. Long-term exposure to high levels of glucose or fatty acids impair insulin secretion in pancreatic islets, which could partly be due to epigenetic alterations. We studied the effects of high concentrations of glucose and palmitate combined for 48 h (glucolipotoxicity) on the transcriptome, the epigenome, and cell function in human islets. Glucolipotoxicity impaired insulin secretion, increased apoptosis, and significantly (false discovery rate <5%) altered the expression of 1,855 genes, including 35 genes previously implicated in T2D by genome-wide association studies (e.g., TCF7L2 and CDKN2B). Additionally, metabolic pathways were enriched for downregulated genes. Of the differentially expressed genes, 1,469 also exhibited altered DNA methylation (e.g., CDK1, FICD, TPX2, and TYMS). A luciferase assay showed that increased methylation of CDK1 directly reduces its transcription in pancreatic ß-cells, supporting the idea that DNA methylation underlies altered expression after glucolipotoxicity. Follow-up experiments in clonal ß-cells showed that knockdown of FICD and TPX2 alters insulin secretion. Together, our novel data demonstrate that glucolipotoxicity changes the epigenome in human islets, thereby altering gene expression and possibly exacerbating the secretory defect in T2D.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Ácido Palmítico/farmacología , Apoptosis/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Secreción de Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo
19.
Clin Epigenetics ; 11(1): 47, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867039

RESUMEN

Following publication of the original article [1], the author reported the title of this article has been misspelled.

20.
Clin Epigenetics ; 11(1): 10, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654845

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease has been associated with increased mRNA expression of FADS2 in the liver and estimated activity of delta-6 desaturase in serum, encoded by the FADS2 gene. Since DNA methylation in the FADS1/2/3 gene cluster has been previously linked with genetic variants and desaturase activities, we now aimed to discover factors regulating DNA methylation of the CpG sites annotated to FADS1/2 genes. METHODS: DNA methylation levels in the CpG sites annotated to FADS2 and FADS1 were analyzed from liver samples of 95 obese participants of the Kuopio Obesity Surgery Study (34 men and 61 women, age 49.5 ± 7.7 years, BMI 43.0 ± 5.7 kg/m2) using the Infinium HumanMethylation450 BeadChip (Illumina). Associations between DNA methylation levels and estimated delta-6 and delta-5 desaturase enzyme activities, liver histology, hepatic mRNA expression, FADS1/2 genotypes, and erythrocyte folate levels were analyzed. RESULTS: We found a negative correlation between DNA methylation levels of cg06781209 and cg07999042 and hepatic FADS2 mRNA expression (both p < 0.05), and with estimated delta-6 desaturase activity based on both liver and serum fatty acids (all p < 0.05). Interestingly, the methylation level of cg07999042 (p = 0.001) but not of cg06781209 (p = 0.874) was associated with FADS2 variant rs174616. CONCLUSIONS: Genetic variants of FADS2 may contribute to the pathogenesis of non-alcoholic fatty liver disease by modifying DNA methylation.


Asunto(s)
Metilación de ADN , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Perfilación de la Expresión Génica/métodos , Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Islas de CpG , delta-5 Desaturasa de Ácido Graso , Epigénesis Genética , Femenino , Ácido Fólico/sangre , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA