Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229165

RESUMEN

The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.

2.
Dev Cogn Neurosci ; 66: 101373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574406

RESUMEN

Adolescence has been hypothesized to be a critical period for the development of human association cortex and higher-order cognition. A defining feature of critical period development is a shift in the excitation: inhibition (E/I) balance of neural circuitry, however how changes in E/I may enhance cortical circuit function to support maturational improvements in cognitive capacities is not known. Harnessing ultra-high field 7 T MR spectroscopy and EEG in a large, longitudinal cohort of youth (N = 164, ages 10-32 years old, 347 neuroimaging sessions), we delineate biologically specific associations between age-related changes in excitatory glutamate and inhibitory GABA neurotransmitters and EEG-derived measures of aperiodic neural activity reflective of E/I balance in prefrontal association cortex. Specifically, we find that developmental increases in E/I balance reflected in glutamate:GABA balance are linked to changes in E/I balance assessed by the suppression of prefrontal aperiodic activity, which in turn facilitates robust improvements in working memory. These findings indicate a role for E/I-engendered changes in prefrontal signaling mechanisms in the maturation of cognitive maintenance. More broadly, this multi-modal imaging study provides evidence that human association cortex undergoes physiological changes consistent with critical period plasticity during adolescence.

3.
Dev Cogn Neurosci ; 67: 101351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383174

RESUMEN

Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers. Since GAC decisions occur over an extended period and with support from adult caregivers and clinicians, adolescents can engage adult-level decision-making in this context. We also weigh the benefits of providing GAC access during adolescence and consider the significant costs of blocking or delaying GAC. Transgender and non-binary (TNB) adolescents face significant mental health challenges, many of which are mitigated by GAC access. Further, initiating the GAC process during adolescence, which we define as beginning at pubertal onset, leads to better long-term mental health outcomes than waiting until adulthood. Taken together, existing research indicates that many adolescents can make informed decisions regarding gender-affirming care, and that this care is critical for the well-being of TNB youth. We highlight relevant considerations for policy makers, researchers, and clinicians.


Asunto(s)
Desarrollo del Adolescente , Toma de Decisiones , Personas Transgénero , Humanos , Adolescente , Desarrollo del Adolescente/fisiología , Personas Transgénero/psicología , Femenino , Masculino , Atención de Afirmación de Género
4.
Neurosci Biobehav Rev ; 153: 105378, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37643681

RESUMEN

Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.

5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555487

RESUMEN

Converging lines of evidence suggest that an imbalance between excitation and inhibition is present in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia (SCZ). Gamma-aminobutyric-acid (GABA) and, to a lesser extent, glutamate (Glu) abnormalities were reported in the DLPFC of SCZ patients, especially on the right hemisphere, by post-mortem studies. However, in vivo evidence of GABA, Glu, and Glu/GABA DLPFC abnormalities, particularly on the right side and the early stages of illness, is limited. In this preliminary study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to investigate bilateral Glu/Creatine (Cre), GABA/Cre, and Glu/GABA in the DLPFC of sixteen first episode schizophrenia (FES), seventeen clinical high risk (CHR), and twenty-six healthy comparison (HC) subjects. FES and CHR had abnormal GABA/Cre and Glu/GABA in the right DLPFC (rDLPFC) compared with HC participants, while no differences were observed in the left DLPFC (lDLPFC) among the three groups. Furthermore, HC had higher Glu/GABA in rDLPFC compared to lDLPFC (R > L), whereas the opposite relationship (R < L) was observed in the DLPFC Glu/GABA of FES patients. Altogether, these findings indicate that GABA/Cre and Glu/GABA DLPFC alterations are present before illness manifestation and worsen in FES patients, thus representing a putative early pathophysiological biomarker for SCZ and related psychotic disorders.


Asunto(s)
Ácido Glutámico , Esquizofrenia , Humanos , Corteza Prefontal Dorsolateral , Esquizofrenia/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico , Espectroscopía de Resonancia Magnética/métodos
6.
Prog Neurobiol ; 219: 102370, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309210

RESUMEN

Animal and human postmortem studies provide evidence for changes in gamma-aminobutyric acid (GABA) and glutamate in prefrontal cortex (PFC) during adolescence, suggesting shifts in excitation and inhibition balance consistent with critical period plasticity. However, how GABA and glutamate change through adolescence and how the balance of these inhibitory and excitatory neurotransmitters changes is not well understood in vivo in humans. High field (7 Tesla) Magnetic Resonance Spectroscopic Imaging was used to investigate age-related changes in the balance of GABA/creatine (Cr) and glutamate/Cr in multiple developmentally-relevant regions of frontal cortex in 144 10-30-year-olds. Results indicated a homogenous pattern of age-related Glu/Cr decreases across regions, while age-related changes in GABA/Cr were heterogenous, with a mix of stable and decreasing age effects. Importantly, balance between glutamate/Cr and GABA/Cr in areas of frontal cortex increased through adolescence, suggesting the presence of critical period plasticity in frontal cortex at this significant time of development when adult trajectories are established.


Asunto(s)
Ácido Glutámico , Ácido gamma-Aminobutírico , Adulto , Adolescente , Humanos , Inhibición Psicológica , Corteza Prefrontal , Imagen por Resonancia Magnética/métodos , Creatina
7.
Schizophr Res ; 248: 98-106, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029656

RESUMEN

Individuals with first-episode schizophrenia (FES) typically present with acute psychotic symptoms. Though antipsychotic drugs are the mainstay for treatment, the neurobiology underlying successful treatment remains largely elusive. Recent evidence from functional connectivity studies highlights the insula as a key structure in the neural mechanism of response. However, molecular contributions to response across insular regions remain largely unknown. We used 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to measure glutamate (Glu), Glutamine (Gln), and GABA from anterior and posterior regions of the insula across antipsychotic treatment. A total of 36 participants were examined, including 15 individuals with FES and moderate to severe psychosis who were scanned at two time points, while starting and after 6 weeks of antipsychotic treatment. Symptoms were carefully monitored across the study period to characterize treatment response. GABA, Glu, and Gln levels were calculated relative to creatine in anterior and posterior insular regions, bilaterally. In relation to psychotic symptom reduction, we observed a significant increase in Glu across all insular regions with (p < 0.001), but no corresponding changes in Gln or GABA. In group analyses, the FES cohort showed lower levels of Glu (p < 0.001) and GABA (p = 0.02) at baseline. Finally, in exploratory analyses, treatment remitters demonstrated a normalization of lower insular Glu levels across treatment, unlike non-remitters. Overall, these findings contribute to our understating of molecular changes associated with antipsychotic response and demonstrate abnormalities specific to the insula in FES.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Glutamina , Ácido Glutámico , Creatina , Imagen por Resonancia Magnética/métodos , Ácido gamma-Aminobutírico
8.
Biol Psychiatry Glob Open Sci ; 1(4): 283-290, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34849503

RESUMEN

BACKGROUND: By adolescence, foundational cognitive and affective neurobehavioral processes specialize based on environmental demands, such as stress, to determine the basis of adult trajectories. The ongoing COVID-19 pandemic has increased stress for everyone, particularly adolescents who face unique stressors such as restrictions in socialization and education. However, variability in brain processes supporting stress reactivity is not well understood. Here, we leverage pre-pandemic brain development studies to identify how maturity of prefrontal connectivity with the amygdala and hippocampus (HPC) is associated with response to COVID-19. We hypothesized that age-related changes in connectivity of affective and cognitive brain systems may underlie the emotional response of adolescents during the pandemic. METHODS: In this study, 10- to 31-year-old participants (n = 111) completed resting-state functional magnetic resonance imaging scans prior to the pandemic and then completed a questionnaire 9 months into the pandemic measuring worry, COVID-related stress, sadness, perceived stress, and positive affect. Associations between pairwise functional connectivity of HPC/amygdala subregions with prefrontal cortex subdivisions and affective reactivity during the pandemic were examined. RESULTS: Regression analyses indicated that both worry and COVID-19-related stress increased with age (false discovery rate-corrected p < .05). Furthermore, greater connectivity between the anterior ventromedial prefrontal cortex and posterior HPC was associated with greater worry and COVID-19-related stress (p < .05 corrected), which was primarily driven by individuals younger than 18 years. CONCLUSIONS: Taken together, our results indicate that increases in stress reactivity to the COVID-19 pandemic across the transition to adulthood are driven by maturation of posterior HPC-ventromedial prefrontal cortex coupling, which integrates stress response and emotional memory processing.

9.
Schizophr Res ; 207: 22-36, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30174252

RESUMEN

Activity-dependent changes in the effective connection strength of synapses are a fundamental feature of a nervous system. This so-called synaptic plasticity is thought to underlie storage of information in memory and has been hypothesized to be crucial for the effects of cognitive behavioral therapy. Synaptic plasticity stores information in a neural network, creating a trace of neural activity from past experience. The plasticity can also change the behavior of the network so the network can differentially transform/compute information in future activations. We discuss these two related but separable functions of synaptic plasticity; one we call "item memory" as it represents and stores items of information in memory, the other we call "process memory" as it encodes and stores functions such as computations to modify network information processing capabilities. We review evidence of item and process memory operations in behavior and evidence that experience modifies the brain's functional networks. We discuss neurodevelopmental rodent models relevant for understanding mental illness and compare two models in which one model, neonatal ventral hippocampal lesion (NVHL) has beneficial adult outcomes after being exposed to an adolescent cognitive experience that is potentially similar to cognitive behavioral therapy. The other model, gestational day 17 methylazoxymethanol acetate (GD17-MAM), does not benefit from the same adolescent cognitive experience. We propose that process memory is altered by early cognitive experience in NVHL rats but not in GD17-MAM rats, and discuss how dysplasticity factors may contribute to the differential adult outcomes after early cognitive experience in the NVHL and MAM models.


Asunto(s)
Terapia Cognitivo-Conductual , Disfunción Cognitiva/fisiopatología , Remediación Cognitiva , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Memoria/fisiología , Red Nerviosa/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Disfunción Cognitiva/terapia , Ratas
10.
Brain Struct Funct ; 223(8): 3543-3556, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29951917

RESUMEN

Patients with neuropsychiatric and neurological disorders often express limbic circuit abnormalities and deficits in information processing. While these disorders appear to have diverse etiologies, their common features suggest neurodevelopmental origins. Neurodevelopment is a prolonged process of diverse events including neurogenesis/apoptosis, axon pathfinding, synaptogenesis, and pruning, to name a few. The precise timing of the neurodevelopmental insult to these processes likely determines the resulting functional outcome. We used the epilepsy and schizophrenia-related gestational day 17 methylazoxymethanol acetate model to examine the impact of this timed neurodevelopmental insult on principal cell morphology and synaptic network function of the dorsal hippocampus (dHPC) circuit. Our observed structural and functional alterations in dHPC are compartment specific, indicating that adverse global exposure during gestation can produce specific alterations and distort information processing in neural circuits that underlie cognitive abilities.


Asunto(s)
Epilepsia/fisiopatología , Hipocampo , Esquizofrenia/fisiopatología , Animales , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Femenino , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Potenciales de la Membrana , Acetato de Metilazoximetanol/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas Long-Evans , Esquizofrenia/inducido químicamente , Sinapsis/fisiología
11.
Neurobiol Learn Mem ; 134 Pt B: 294-303, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27485950

RESUMEN

Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM neurodevelopmental model, and that hyperactivity can confound assessments of cognition in animal models of mental dysfunction.


Asunto(s)
Función Ejecutiva/fisiología , Hipocampo/fisiopatología , Hipercinesia/fisiopatología , Trastornos de la Memoria/fisiopatología , Acetato de Metilazoximetanol/farmacología , Corteza Prefrontal/fisiopatología , Esquizofrenia/fisiopatología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Masculino , Embarazo , Ratas , Ratas Long-Evans , Esquizofrenia/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...