Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1335998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469301

RESUMEN

Introduction: In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods: Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results: BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion: Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.


Asunto(s)
Autoantígenos , Glomerulonefritis Membranosa , Humanos , Animales , Ratones , Linfocitos T , Anticuerpos , Inmunoterapia , Poliésteres
2.
Nat Rev Nephrol ; 20(5): 313-329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321168

RESUMEN

Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.


Asunto(s)
Enfermedades Renales , Sirtuinas , Sirtuinas/metabolismo , Sirtuinas/fisiología , Humanos , Enfermedades Renales/metabolismo , Animales , Riñón/metabolismo , Estrés Oxidativo , Insuficiencia Renal Crónica/metabolismo , Mitocondrias/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Autofagia/fisiología
3.
Trends Microbiol ; 32(1): 53-67, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393180

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, primarily affects the epithelial compartment in the upper and lower airways. There is evidence that the microvasculature in both the pulmonary and extrapulmonary systems is a major target of SARS-CoV-2. Consistent with this, vascular dysfunction and thrombosis are the most severe complications in COVID-19. The proinflammatory milieu triggered by the hyperactivation of the immune system by SARS-CoV-2 has been suggested to be the main trigger for endothelial dysfunction during COVID-19. More recently, a rapidly growing number of reports have indicated that SARS-CoV-2 can interact directly with endothelial cells through the spike protein, leading to multiple instances of endothelial dysfunction. Here, we describe all the available findings showing the direct effect of the SARS-CoV-2 spike protein on endothelial cells and offer mechanistic insights into the molecular basis of vascular dysfunction in severe COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/complicaciones , Glicoproteína de la Espiga del Coronavirus/genética , Células Endoteliales/metabolismo
4.
Am J Kidney Dis ; 83(5): 588-600.e1, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38151224

RESUMEN

RATIONALE & OBJECTIVE: Proteinuria and anti-phospholipase A2 receptor 1 (anti-PLA2R1) antibody titers are associated with primary membranous nephropathy (MN) outcomes. We evaluated the association of antibodies against the cysteine-rich (CysR) and C-type lectin 1, 7, and 8 (CTLD1, CTLD7, and CTLD8) domains of PLA2R1 with MN outcomes. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: One-hundred-thirteen consecutive, consenting patients referred to the Nephology Unit of the Azienda-Socio-Sanitaria-Territoriale (ASST) Papa Giovanni XXIII (Bergamo, Italy) with PLA2R1-related, biopsy-proven MN whose persistent nephrotic syndrome (NS) was managed conservatively for>6 months and were monitored with serial evaluations of proteinuria, autoantibodies (by enzyme-linked immunosorbent assay), and clinical outcomes. EXPOSURE: Rituximab. OUTCOME: Complete (proteinuria<0.3g/24h) or partial (proteinuria≥0.3g/24h and<3.0g/24h with>50% reduction vs basal) NS remission. ANALYTICAL APPROACH: Univariable and multivariable Cox regression analyses. RESULTS: All patients had anti-CysR antibodies; 62 (54.9%) were multidomain recognizers. Anti-PLA2R1 and anti-CysR antibody titers were strongly correlated at baseline (P<0.001, r=0.934), 6 months (P<0.001, r=0.964), and 12 months (P<0.001, r=0.944). During a median follow-up of 37.1 (IQR, 20.3-56.9) months, 71 patients (62.8%) achieved either complete or partial remission of their NS. Lower baseline anti-PLA2R1 (HR, 0.997 [95% CI, 0.996-0.999], P=0.002) and anti-CysR [HR, 0.996 [95% CI, 0.993-0.998], P=0.001) titers were associated with a higher probability of remission, along with female sex, lower proteinuria, and lower serum creatinine levels (P<0.05 for all comparisons). Anti-CTLD antibodies were not associated with outcomes. At 6 and 12 months, compared to baseline, anti-PLA2R1 and anti-CysR antibody titers decreased more in patients progressing to partial or complete remission than in those without remission (P<0.05 for all comparisons). LIMITATIONS: Observational design. CONCLUSIONS: In PLA2R1-related MN, anti-PLA2R1 and anti-CysR antibodies similarly predict rituximab efficacy independent of PLA2R1 domain recognition. The choice between these tests should be dictated by feasibility and costs. Evaluating anti-CTLD antibodies appears unnecessary. PLAIN-LANGUAGE SUMMARY: Primary membranous nephropathy (MN), a leading cause of nephrotic syndrome (NS) in adults, is an autoimmune disease caused by autoantibodies binding to the podocyte antigen phospholipase A2 receptor 1 (PLA2R1). We assessed whether the effects of anti-CD20 cytolytic therapy with the monoclonal antibody rituximab are associated with detection rates and levels of anti-PLA2R1 antibodies and antibodies against PLA2R1 domains such as cysteine-rich (CysR), and C-type lectin 1, 7, and 8 (CTLD1, 7, and 8), in patients with PLA2R1-related MN and persistent NS. The probability of rituximab-induced complete or partial NS remission was associated with baseline anti-PLA2R1 and anti-CysR antibody titers, but not with anti-CTLD1, 7 and 8 antibodies or multidomain recognition. Integrated evaluation of anti-PLA2R1 or anti-CysR antibodies with proteinuria and kidney function may play a role in monitoring the effects of rituximab in patients with PLA2R1-related NS and MN.


Asunto(s)
Autoanticuerpos , Glomerulonefritis Membranosa , Receptores de Fosfolipasa A2 , Rituximab , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Estudios de Cohortes , Cisteína , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/inmunología , Factores Inmunológicos/uso terapéutico , Estudios Prospectivos , Proteinuria/tratamiento farmacológico , Receptores de Fosfolipasa A2/inmunología , Rituximab/uso terapéutico , Resultado del Tratamiento
5.
PLoS One ; 18(10): e0291909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37816025

RESUMEN

Sirtuin 3 (SIRT3), the main deacetylase of mitochondria, modulates the acetylation levels of substrates governing metabolism and oxidative stress. In the kidney, we showed that SIRT3 affects the proper functioning of high energy-demanding cells, such as tubular cells and podocytes. Less is known about the role of SIRT3 in regulating endothelial cell function and its impact on the progression of kidney disease. Here, we found that whole body Sirt3-deficient mice exhibited reduced renal capillary density, reflecting endothelial dysfunction, and VEGFA expression compared to wild-type mice. This was paralleled by activation of hypoxia signaling, upregulation of HIF-1α and Angiopietin-2, and oxidative stress increase. These alterations did not result in kidney disease. However, when Sirt3-deficient mice were exposed to the nephrotoxic stimulus Adriamycin (ADR) they developed aggravated endothelial rarefaction, altered VEGFA signaling, and higher oxidative stress compared to wild-type mice receiving ADR. As a result, ADR-treated Sirt3-deficient mice experienced a more severe injury with exacerbated albuminuria, podocyte loss and fibrotic lesions. These data suggest that SIRT3 is a crucial regulator of renal vascular homeostasis and its dysregulation is a predisposing factor for kidney disease. By extension, our findings indicate SIRT3 as a pharmacologic target in progressive renal disease whose treatments are still imperfect.


Asunto(s)
Enfermedades Renales , Sirtuina 3 , Enfermedades Vasculares , Ratones , Animales , Sirtuina 3/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Mitocondrias/metabolismo , Enfermedades Vasculares/metabolismo
6.
Sci Rep ; 13(1): 11392, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452090

RESUMEN

The spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can interact with endothelial cells. However, no studies demonstrated the direct effect of the spike protein subunit 1 (S1) in inducing lung vascular damage and the potential mechanisms contributing to lung injury. Here, we found that S1 injection in mice transgenic for human angiotensin converting enzyme 2 (ACE2) induced early loss of lung endothelial thromboresistance at 3 days, as revealed by thrombomodulin loss and von Willebrand factor (vWF) increase. In parallel, vascular and epithelial C3 deposits and enhanced C3a receptor (C3aR) expression were observed. These changes preceded diffuse alveolar damage and lung vascular fibrin(ogen)/platelets aggregates at 7 days, as well as inflammatory cell recruitment and fibrosis. Treatment with C3aR antagonist (C3aRa) inhibited lung C3 accumulation and C3a/C3aR activation, limiting vascular thrombo-inflammation and fibrosis. Our study demonstrates that S1 triggers vascular dysfunction and activates complement system, instrumental to lung thrombo-inflammatory injury. By extension, our data indicate C3aRa as a valuable therapeutic strategy to limit S1-dependent lung pathology.


Asunto(s)
Complemento C3a , Células Endoteliales , Receptores de Complemento , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Células Endoteliales/citología , Células Endoteliales/virología , Pulmón/patología , Pulmón/virología , Complemento C3a/metabolismo , Receptores de Complemento/metabolismo , Fibrosis , Ratones Transgénicos , Humanos , Animales , Ratones , COVID-19 , Inflamación
7.
Front Immunol ; 14: 1123158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926327

RESUMEN

We examined the immune response in subjects previously infected with SARS-CoV2 and infection-naïve 9 months after primary 2-dose COVID-19 mRNA vaccination and 3 months after the booster dose in a longitudinal cohort of healthcare workers. Nine months after primary vaccination, previously infected subjects exhibited higher residual antibody levels, with significant neutralizing activity against distinct variants compared to infection-naïve subjects. The higher humoral response was associated with higher levels of receptor binding domain (RBD)-specific IgG+ and IgA+ memory B cells. The booster dose increased neither neutralizing activity, nor the B and T cell frequencies. Conversely, infection-naïve subjects needed the booster to achieve comparable levels of neutralizing antibodies as those found in previously infected subjects after primary vaccination. The neutralizing titer correlated with anti-RBD IFNγ producing T cells, in the face of sustained B cell response. Notably, pre-pandemic samples showed high Omicron cross-reactivity. These data show the importance of the booster dose in reinforcing immunological memory and increasing circulating antibodies in infection-naïve subjects.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , ARN Viral , SARS-CoV-2 , Anticuerpos Neutralizantes
8.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291179

RESUMEN

A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+), was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was associated with impaired renal SIRT3 expression, which was restored through supplementation with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α). Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1 (OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology and protection against oxidative damage in mice born to mothers fed the LP diet. Our results provide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae of reduced nephron number in adulthood.


Asunto(s)
Sirtuina 3 , Ratones , Animales , Sirtuina 3/metabolismo , NAD , Dieta con Restricción de Proteínas , PPAR gamma , Nefronas/metabolismo , Suplementos Dietéticos
9.
Front Pharmacol ; 13: 958136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120314

RESUMEN

Rituximab is one of the first-line therapies for patients with membranous nephropathy (MN) at high risk of progression towards kidney failure. We investigated whether the response to Rituximab was affected by sex and anti-PLA2R antibody levels in 204 consecutive patients (148 males and 56 females) with biopsy-proven MN who were referred to the Nephrology Unit of the Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII from March 2001 to October 2016 and managed conservatively for at least 6 months. The primary outcome was a combined endpoint of complete (proteinuria <0.3 g/24 h) or partial (proteinuria <3.0 g/24 h and >50% reduction vs. baseline) remission. Patients gave written informed consent to Rituximab treatment. The study was internally funded. No pharmaceutical company was involved. Anti-PLA2R antibodies were detectable in 125 patients (61.3%). At multivariable analyses, female gender (p = 0.0198) and lower serum creatinine levels (p = 0.0108) emerged as independent predictors of better outcome (p = 0.0198). The predictive value of proteinuria (p = 0.054) and anti-PLA2R titer (p = 0.0766) was borderline significant. Over a median (IQR) of 24.8 (12.0-36.0) months, 40 females (71.4%) progressed to the combined endpoint compared with 73 males (49.3%). Anti-PLA2R titers at baseline [127.6 (35.7-310.8) vs. 110.1 (39.9-226.7) RU/ml] and after Rituximab treatment were similar between the sexes. However, the event rate was significantly higher in females than in males [HR (95%): 2.12 (1.44-3.12), p = 0.0001]. Forty-five of the 62 patients (72.3%) with anti-PLA2R titer below the median progressed to the combined endpoint versus 35 of the 63 (55.6%) with higher titer [HR (95%): 1.97 (1.26-3.07), p < 0.0029]. The highest probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer below the median (86.7%), followed by females with anti-PLA2R antibody titer above the median (83.3%), males with titer below the median (68.1%), and males with titer above the median (44.4%). This trend was statistically significant (p = 0.0023). Similar findings were observed for complete remission (proteinuria <0.3 g/24 h) and after analysis adjustments for baseline serum creatinine. Thus, despite similar immunological features, females were more resilient to renal injury following Rituximab therapy. These findings will hopefully open new avenues to identify the molecular pathways underlying sex-related nephroprotective effects.

10.
Cells ; 11(11)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681450

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function.


Asunto(s)
Síndrome Hemolítico-Urémico , Podocitos , Receptores de Complemento , Toxina Shiga II , Animales , Síndrome Hemolítico-Urémico/etiología , Síndrome Hemolítico-Urémico/metabolismo , Glomérulos Renales , Ratones , Mitocondrias/metabolismo , Podocitos/metabolismo , Receptores de Complemento/metabolismo , Toxina Shiga II/farmacología
11.
Front Immunol ; 13: 827146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320941

RESUMEN

Microvascular thrombosis is associated with multiorgan failure and mortality in coronavirus disease 2019 (COVID-19). Although thrombotic complications may be ascribed to the ability of SARS-CoV-2 to infect and replicate in endothelial cells, it has been poorly investigated whether, in the complexity of viral infection in the human host, specific viral elements alone can induce endothelial damage. Detection of circulating spike protein in the sera of severe COVID-19 patients was evaluated by ELISA. In vitro experiments were performed on human microvascular endothelial cells from the derma and lung exposed to SARS-CoV-2-derived spike protein 1 (S1). The expression of adhesive molecules was studied by immunofluorescence and leukocyte adhesion and platelet aggregation were assessed under flow conditions. Angiotensin converting enzyme 2 (ACE2) and AMPK expression were investigated by Western Blot analysis. In addition, S1-treated endothelial cells were incubated with anti-ACE2 blocking antibody, AMPK agonist, or complement inhibitors. Our results show that significant levels of spike protein were found in the 30.4% of severe COVID-19 patients. In vitro, the activation of endothelial cells with S1 protein, via ACE2, impaired AMPK signalling, leading to robust leukocyte recruitment due to increased adhesive molecule expression and thrombomodulin loss. This S1-induced pro-inflammatory phenotype led to exuberant C3 and C5b-9 deposition on endothelial cells, along with C3a and C5a generation that further amplified S1-induced complement activation. Functional blockade of ACE2 or complement inhibition halted S1-induced platelet aggregates by limiting von Willebrand factor and P-selectin exocytosis and expression on endothelial cells. Overall, we demonstrate that SARS-CoV-2-derived S1 is sufficient in itself to propagate inflammatory and thrombogenic processes in the microvasculature, amplified by the complement system, recapitulating the thromboembolic complications of COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Proteínas Quinasas Activadas por AMP/metabolismo , Enzima Convertidora de Angiotensina 2 , Proteínas del Sistema Complemento/metabolismo , Células Endoteliales/metabolismo , Humanos , Agregación Plaquetaria , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Sci Rep ; 11(1): 23580, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880332

RESUMEN

Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3-/- metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.


Asunto(s)
Glucólisis/genética , Enfermedades Renales/genética , Organogénesis/genética , Procesamiento Proteico-Postraduccional/genética , Sirtuina 3/genética , Animales , Diferenciación Celular/genética , Núcleo Celular/genética , Cromatina/genética , Epigénesis Genética/genética , Riñón/fisiología , Lisina/genética , Ratones , Ratones Endogámicos C57BL , NAD/genética , Nefronas/fisiología , Fosfofructoquinasas/genética
13.
Contrib Nephrol ; 199: 229-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34344017

RESUMEN

Clinical Background: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread globally from late 2019, reaching pandemic proportions. Epidemiology: The related disease, COVID-19, exacerbates and progresses due to patients' abnormal inflammatory/immune responses, widespread endothelial damage, and complement-induced blood clotting with microangiopathy. COVID-19 manifests mainly as a respiratory illness. In cases of severe viral pneumonia, it may lead to acute respiratory distress syndrome, respiratory failure, and death. Challenges: Many extrapulmonary manifestations commonly occur, and a substantial proportion of patients with severe COVID-19 exhibit signs of kidney damage. Clinically, kidney involvement ranges from mild/moderate proteinuria and hematuria to acute kidney injury (AKI) requiring renal replacement therapy (RRT). The pathophysiologic mechanisms of kidney damage and AKI in patients with COVID-19 remain unclear but are known to be multifactorial. Current knowledge implies direct SARS-CoV-2-dependent effects on kidney cells (tubular epithelial cells and podocytes) and indirect mechanisms through the systemic effect of viral infection secondary to the critical pulmonary illness and its management. Prevention and Treatment: Standard-of-care strategies apply, as there is no specific evidence to suggest that COVID-19 AKI should be managed differently from other types in severely ill patients. If conservative management fails, RRT should be considered. The choice of RRT approaches and sequential extracorporeal therapies depends on local availability, resources, and expertise. The focus should now be on the long-term follow-up of COVID-19 patients, especially those who developed kidney injury and dysfunction. This represents an opportunity for integrated multidisciplinary research to clarify the natural history of COVID-19 renal sequelae and the best therapeutic interventions to mitigate them.


Asunto(s)
Lesión Renal Aguda/terapia , Lesión Renal Aguda/virología , COVID-19/complicaciones , COVID-19/terapia , COVID-19/epidemiología , Hematuria/virología , Humanos , Nefrólogos , Proteinuria/virología , Terapia de Reemplazo Renal , SARS-CoV-2
14.
Curr Opin Nephrol Hypertens ; 30(2): 252-263, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395036

RESUMEN

PURPOSE OF REVIEW: We provide a comprehensive overview of angiotensin-converting enzyme 2 (ACE2) as a possible candidate for pharmacological approaches to halt inflammatory processes in different pathogenic conditions. RECENT FINDINGS: ACE2 has quickly gained prominence in basic research as it has been identified as the main entry receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This novel pathogen causes Coronavirus Disease 2019 (COVID-19), a pathogenic condition that reached pandemic proportion and is associated with unprecedented morbidity and mortality. SUMMARY: The renin-angiotensin system is a complex, coordinated hormonal cascade that plays a pivotal role in controlling individual cell behaviour and multiple organ functions. ACE2 acts as an endogenous counter-regulator to the pro-inflammatory and pro-fibrotic pathways triggered by ACE through the conversion of Ang II into the vasodilatory peptide Ang 1-7. We discuss the structure, function and expression of ACE2 in different tissues. We also briefly describe the role of ACE2 as a pivotal driver across a wide spectrum of pathogenic conditions, such as cardiac and renal diseases. Furthermore, we provide the most recent data concerning the possible role of ACE2 in mediating SARS-CoV-2 infection and dictating COVID-19 severity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Enzima Convertidora de Angiotensina 2/genética , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
15.
Nat Rev Nephrol ; 17(1): 46-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33077917

RESUMEN

In December 2019, a novel coronavirus was isolated from the respiratory epithelium of patients with unexplained pneumonia in Wuhan, China. This pathogen, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a pathogenic condition that has been termed coronavirus disease 2019 (COVID-19) and has reached pandemic proportions. As of 17 September 2020, more than 30 million confirmed SARS-CoV-2 infections have been reported in 204 different countries, claiming more than 1 million lives worldwide. Accumulating evidence suggests that SARS-CoV-2 infection can lead to a variety of clinical conditions, ranging from asymptomatic to life-threatening cases. In the early stages of the disease, most patients experience mild clinical symptoms, including a high fever and dry cough. However, 20% of patients rapidly progress to severe illness characterized by atypical interstitial bilateral pneumonia, acute respiratory distress syndrome and multiorgan dysfunction. Almost 10% of these critically ill patients subsequently die. Insights into the pathogenic mechanisms underlying SARS-CoV-2 infection and COVID-19 progression are emerging and highlight the critical role of the immunological hyper-response - characterized by widespread endothelial damage, complement-induced blood clotting and systemic microangiopathy - in disease exacerbation. These insights may aid the identification of new or existing therapeutic interventions to limit the progression of early disease and treat severe cases.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , COVID-19/complicaciones , Proteínas del Sistema Complemento/fisiología , Endotelio Vascular/fisiopatología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/inmunología , COVID-19/terapia , Vía Clásica del Complemento , Humanos , Inmunización Pasiva , Enfermedades Renales/etiología , Sueroterapia para COVID-19
16.
EBioMedicine ; 61: 103069, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33130396

RESUMEN

BACKGROUND: Italy was the first western country to experience a large Coronavirus Disease 2019 (COVID-19) outbreak and the province of Bergamo experienced one of the deadliest COVID-19 outbreaks in the world. Following the peak of the epidemic in mid-March, the curve has slowly fallen thanks to the strict lockdown imposed by the Italian government on 9th March 2020. METHODS: We performed a cross-sectional study to assess the prevalence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in 423 workers in Bergamo province who returned to the workplace after the end of the Italian lockdown on 5th May 2020. To this end, we performed an enzyme-linked immunosorbent assay (ELISA) to detect the humoral response against SARS-CoV-2 and a nasopharyngeal swab to assess the presence of SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR). As a secondary aim of the study, we validated a lateral flow immunochromatography assay (LFIA) for the detection of anti-SARS-CoV-2 antibodies. FINDINGS: ELISA identified 38.5% positive subjects, of whom 51.5% were positive for both IgG and IgM, 47.3% were positive only for IgG, but only 1.2% were positive for IgM alone. Only 23 (5.4%) participants tested positive for SARS-CoV-2 by rRT-PCR, although with high cycle thresholds (between 34 and 39), indicating a very low residual viral load that was not able to infect cultured cells. All these rRT-PCR positive subjects had already experienced seroconversion. When the ELISA was used as the comparator, the estimated specificity and sensitivity of the rapid LFIA for IgG were 98% and 92%, respectively. INTERPRETATION: the prevalence of SARS-CoV-2 infection in the province of Bergamo reached 38.5%, significantly higher than has been reported for most other regions worldwide. Few nasopharyngeal swabs tested positive in fully recovered subjects, though with a very low SARS-CoV-2 viral load, with implications for infectivity and discharge policies for positive individuals in the post-pandemic period. The rapid LFIA used in this study is a valuable tool for rapid serologic surveillance of COVID-19 for population studies. FUNDING: The study was supported by Regione Lombardia, Milano Serravalle - Milano Tangenziali S.p.A., Brembo S.p.A, and by MEI System.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/genética , Betacoronavirus/inmunología , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , ARN Viral/metabolismo , Adulto , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Italia/epidemiología , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Carga Viral
17.
Sci Rep ; 10(1): 8418, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439965

RESUMEN

More effective treatments for diabetic nephropathy remain a major unmet clinical need. Increased oxidative stress is one of the most important pathological mechanisms that lead to kidney damage and functional impairment induced by diabetes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase and critically regulates cellular reactive oxygen species (ROS) production and detoxification. Honokiol is a natural biphenolic compound that, by activating mitochondrial SIRT3, can carry out anti-oxidant, anti-inflammatory and anti-fibrotic activities. Here, we sought to investigate the renoprotective effects of honokiol in BTBR ob/ob mice with type 2 diabetes. Diabetic mice were treated with vehicle or honokiol between the ages of 8 and 14 weeks. Wild-type mice served as controls. Renal Sirt3 expression was significantly reduced in BTBR ob/ob mice, and this was associated with a reduction in its activity and increased ROS levels. Selective activation of SIRT3 through honokiol administration translated into the attenuation of albuminuria, amelioration of glomerular damage, and a reduction in podocyte injury. SIRT3 activation preserved mitochondrial wellness through the activation of SOD2 and the restoration of PGC-1α expression in glomerular cells. Additionally, the protective role of SIRT3 in glomerular changes was associated with enhanced tubular Sirt3 expression and upregulated renal Nampt levels, indicating a possible tubule-glomerulus retrograde interplay, which resulted in improved glomerular SIRT3 activity. Our results demonstrate the hitherto unknown renoprotective effect of SIRT3 against diabetic glomerular disease and suggest that the pharmacological modulation of SIRT3 activity is a possible novel approach to treating diabetic nephropathy.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Glomérulos Renales/patología , Lignanos/uso terapéutico , Albuminuria/prevención & control , Animales , Citocinas/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Masculino , Ratones , Ratones Obesos , Mitocondrias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Podocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo
19.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32161193

RESUMEN

Renal activation of the complement system has been described in patients with diabetic nephropathy (DN), although its pathological relevance is still ill-defined. Here, we studied whether glomerular C3a, generated by uncontrolled complement activation, promotes podocyte damage, leading to proteinuria and renal injury in mice with type 2 diabetes. BTBR ob/ob mice exhibited podocyte loss, albuminuria, and glomerular injury accompanied by C3 deposits and increased C3a and C3a receptor (C3aR) levels. Decreased glomerular nephrin and α-actinin4 expression, coupled with integrin-linked kinase induction, were also observed. Treatment of DN mice with a C3aR antagonist enhanced podocyte density and preserved their phenotype, limiting proteinuria and glomerular injury. Mechanistically, ultrastructural and functional mitochondrial alterations, accompanied by downregulation of antioxidant superoxide dismutase 2 (SOD2) and increased protein oxidation, occurred in podocytes and were normalized by C3aR blockade. In cultured podocytes, C3a induced cAMP-dependent mitochondrial fragmentation. Alterations of mitochondrial membrane potential, SOD2 expression, and energetic metabolism were also found in response to C3a. Notably, C3a-induced podocyte motility was inhibited by SS-31, a peptide with mitochondrial protective effects. These data indicate that C3a blockade represents a potentially novel therapeutic strategy in DN for preserving podocyte integrity through the maintenance of mitochondrial functions.


Asunto(s)
Complemento C3a/metabolismo , Nefropatías Diabéticas/patología , Podocitos/patología , Receptores de Complemento/antagonistas & inhibidores , Animales , Activación de Complemento , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Glomérulos Renales/patología , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Podocitos/metabolismo , Receptores de Complemento/metabolismo , Superóxido Dismutasa/metabolismo
20.
Nephron ; 144(5): 213-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32203970

RESUMEN

Here, we review the most recent findings on the effects of SARS-CoV-2 infection on kidney diseases, including acute kidney injury, and examine the potential effects of ARBs on the outcomes of patients with COVID-19. Lastly, we discuss the clinical management of COVID-19 patients with existing chronic renal disorders, particularly those in dialysis and with kidney transplants.


Asunto(s)
Angiotensinas/antagonistas & inhibidores , Infecciones por Coronavirus/complicaciones , Enfermedades Renales/complicaciones , Enfermedades Renales/tratamiento farmacológico , Neumonía Viral/complicaciones , Antagonistas de Receptores de Angiotensina , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina , Betacoronavirus/fisiología , COVID-19 , Humanos , Riñón/virología , Trasplante de Riñón , Nefrólogos , Pandemias , Peptidil-Dipeptidasa A , Diálisis Renal , SARS-CoV-2 , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...