Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
One Health ; 18: 100744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725960

RESUMEN

The emergence of SARS-CoV-2 in 2019 and its rapid spread throughout the world has caused the largest pandemic of our modern era. The zoonotic origin of this pathogen highlights the importance of the One Health concept and the need for a coordinated response to this kind of threats. Since its emergence, the virus has caused >7 million deaths worldwide. However, the animal source for human outbreaks remains unknown. The ability of the virus to jump between hosts is facilitated by the presence of the virus receptor, the highly conserved angiotensin-converting enzyme 2 (ACE2), found in various mammals. Positivity for SARS-CoV-2 has been reported in various species, including domestic animals and livestock, but their potential role in bridging viral transmission to humans is still unknown. Additionally, the virus has evolved over the pandemic, resulting in variants with different impacts on human health. Therefore, suitable animal models are crucial to evaluate the susceptibility of different mammalian species to this pathogen and the adaptability of different variants. In this work, we established a transgenic mouse model that expresses the feline ACE2 protein receptor (cACE2) under the human cytokeratin 18 (K18) gene promoter's control, enabling high expression in epithelial cells, which the virus targets. Using this model, we assessed the susceptibility, pathogenicity, and transmission of SARS-CoV-2 variants. Our results show that the sole expression of the cACE2 receptor in these mice makes them susceptible to SARS-CoV-2 variants from the initial pandemic wave but does not enhance susceptibility to omicron variants. Furthermore, we demonstrated efficient contact transmission of SARS-CoV-2 between transgenic mice that express either the feline or the human ACE2 receptor.

2.
Res Vet Sci ; 171: 105222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513461

RESUMEN

In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 µg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.


Asunto(s)
Líquido Folicular , Proteómica , Femenino , Caballos , Animales , Líquido Folicular/química , Líquido Folicular/metabolismo , Secretoma , Meiosis , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria
3.
Proc Natl Acad Sci U S A ; 120(42): e2305712120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812723

RESUMEN

Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.


Asunto(s)
Adenilato Quinasa , Infertilidad , Semen , Animales , Bovinos , Femenino , Masculino , Ratones , Embarazo , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Fertilidad , Mamíferos , Semen/metabolismo , Análisis de Semen , Motilidad Espermática , Espermatozoides/metabolismo
4.
iScience ; 26(7): 107134, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456838

RESUMEN

Karyopherins mediate the movement between the nucleus and cytoplasm of specific proteins in diverse cellular processes. Through a loss-of-function approach, we here examine the role of Karyopherin Subunit Alpha 2 (Kpna2) in spermatogenesis. Knockout male mice exhibited reduced body size and sperm motility, increased sperm abnormalities, and led to the dysregulation of testis gene expression and ultimately to infertility. Impaired mRNA expression mainly affected clusters of genes expressed in spermatids and spermatocytes. Downregulated genes included a set of genes that participate in cell adhesion and extracellular matrix (ECM) organization. We detected both the enrichment of some transcription factors that bind to regions around transcription start sites of downregulated genes and the impaired transport of specific factors to the nucleus of spermatid cells. We propose that Kpna2 is essential in the seminiferous tubules for promoting the translocation of testis-specific transcription factors that control the expression of genes related to ECM organization.

5.
Front Immunol ; 14: 1166725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063925

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.


Asunto(s)
COVID-19 , Virus de la Fiebre Aftosa , Masculino , Animales , Humanos , Porcinos , Ratones , Antivirales/farmacología , Virus de la Fiebre Aftosa/genética , Células CACO-2 , SARS-CoV-2/genética , ARN no Traducido
6.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36975404

RESUMEN

Spermatogenic cells express more alternatively spliced RNAs than most whole tissues; however, the regulation of these events remains unclear. Here, we have characterized the function of a testis-specific IQ motif-containing H gene (Iqch) using a mutant mouse model. We found that Iqch is essential for the specific expression of RNA isoforms during spermatogenesis. Using immunohistochemistry of the testis, we noted that Iqch was expressed mainly in the nucleus of spermatocyte and spermatid, where IQCH appeared juxtaposed with SRRM2 and ERSP1 in the nuclear speckles, suggesting that interactions among these proteins regulate alternative splicing (AS). Using RNA-seq, we found that mutant Iqch produces alterations in gene expression, including the clear downregulation of testis-specific lncRNAs and protein-coding genes at the spermatid stage, and AS modifications - principally increased intron retention - resulting in complete male infertility. Interestingly, we identified previously unreported spliced transcripts in the wild-type testis, while mutant Iqch modified the expression and use of hundreds of RNA isoforms, favouring the expression of the canonical form. This suggests that Iqch is part of a splicing control mechanism, which is essential in germ cell biology.


Asunto(s)
Isoformas de ARN , Testículo , Animales , Ratones , Masculino , Testículo/metabolismo , Isoformas de ARN/metabolismo , Espermatogénesis/genética , Espermátides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Leukemia ; 36(10): 2509-2518, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030305

RESUMEN

RNA splicing and epigenetic gene mutations are the most frequent genetic lesions found in patients with myelodysplastic neoplasm (MDS). About 25% of patients present concomitant mutations in such pathways, suggesting a cooperative role in MDS pathogenesis. Importantly, mutations in the splicing factor ZRSR2 frequently associate with alterations in the epigenetic regulator TET2. However, the impact of these concurrent mutations in hematopoiesis and MDS remains unclear. Using CRISPR/Cas9 genetically engineered mice, we demonstrate that Zrsr2m/mTet2-/- promote MDS with reduced penetrance. Animals presented peripheral blood cytopenia, splenomegaly, extramedullary hematopoiesis, and multi-lineage dysplasia, signs consistent with MDS. We identified a myelo-erythroid differentiation block accompanied by an expansion of LT-HSC and MPP2 progenitors. Transplanted animals presented a similar phenotype, thus indicating that alterations were cell-autonomous. Whole-transcriptome analysis in HSPC revealed key alterations in ribosome, inflammation, and migration/motility processes. Moreover, we found the MAPK pathway as the most affected target by mRNA aberrant splicing. Collectively, this study shows that concomitant Zrsr2 mutation and Tet2 loss are sufficient to initiate MDS in mice. Understanding this mechanistic interplay will be crucial for the identification of novel therapeutic targets in the spliceosome/epigenetic MDS subgroup.


Asunto(s)
Dioxigenasas , Síndromes Mielodisplásicos , Neoplasias , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ratones , Mutación , Síndromes Mielodisplásicos/patología , Empalme del ARN/genética , Factores de Empalme de ARN/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas
8.
iScience ; 25(2): 103860, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198906

RESUMEN

ZRSR2 is a splicing factor involved in recognition of 3'-intron splice sites that is frequently mutated in myeloid malignancies and several tumors; however, the role of mutations of Zrsr2 in other tissues has not been analyzed. To explore the biological role of ZRSR2, we generated three Zrsr2 mutant mouse lines. All Zrsr2 mutant lines exhibited blood cell anomalies, and in two lines, oogenesis was blocked at the secondary follicle stage. RNA-seq of Zrsr2 mu secondary follicles showed aberrations in gene expression and showed altered alternative splicing (AS) events involving enrichment of U12-type intron retention (IR), supporting the functional Zrsr2 action in minor spliceosomes. IR events were preferentially associated with centriole replication, protein phosphorylation, and DNA damage checkpoint. Notably, we found alterations in AS events of 50 meiotic genes. These results indicate that ZRSR2 mutations alter splicing mainly in U12-type introns, which may affect peripheral blood cells, and impede oogenesis and female fertility.

9.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915805

RESUMEN

Low birth weight and rapid postnatal weight gain are independent predictors of obesity and diabetes in adult life, yet the molecular events involved in this process remain unknown. In inbred and outbred mice, this study examines natural intrauterine growth restriction (IUGR) in relation to body weight, telomere length (TL), glucose tolerance, and growth factor gene (Igf1, Igf2, Insr, Igf1r, and Igf2r) mRNA expression levels in the brain, liver, and muscle at 2- and 10 days of age and then at 3- and 9 months of age. At birth, ~15% of the animals showed IUGR, but by 3 and 9 months, half of these animals had regained the same weight as controls without IUGR (recuperated group). At 10 days, there was no difference in TL between animals undergoing IUGR and controls. However, by 3 and 9 months of age, the recuperated animals had shorter TL than the control and IUGR-non recuperated animals and also showed glucose intolerance. Further, compared to controls, Igf1 and Igf2 growth factor mRNA expression was lower in Day 2-IUGR mice, while Igf2r and Insr mRNA expression was higher in D10-IUGR animals. Moreover, at 3 months of age, only in the recuperated group were brain and liver Igf1, Igf2, Insr, and Igf2r expression levels higher than in the control and IUGR-non-recuperated groups. These data indicate that catch-up growth but not IUGR per se affects TL and glucose tolerance, and suggest a role in this latter process of insulin/insulin-like growth signaling pathway gene expression during early development.


Asunto(s)
Peso Corporal , Retardo del Crecimiento Fetal/metabolismo , Intolerancia a la Glucosa/etiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Homeostasis del Telómero , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Músculos/metabolismo
10.
Theriogenology ; 162: 15-21, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33388725

RESUMEN

Early embryonic development may be affected by adrenal hyperactivity in stressful situations which may lead to endocrine changes in the embryo environment. A sensitive period in porcine embryo development is the 4-cell stage when the embryo genome activation occurs. A mixed in vivo-in vitro system was implemented to test whether an altered milieu around this stage could affect embryo development and blastocyst quality in the porcine model. After in vitro maturation and fertilisation, presumptive zygotes were exposed for 24 h to plasma collected after ovulation from adrenocorticotropic hormone (ACTH)-treated, non-ACTH-treated sows; and, medium without plasma, supplemented with bovine serum albumin. Subsequently, embryo development and differences in gene expression were tested among treatments. Cleavage and blastocyst rates did not differ between treatments. Blastocyst quality by morphology assessment was similar when all the resulting blastocysts were included in the analysis. However, when only expanded blastocysts (and onwards) were included in the analysis, the blastocysts from the non-ACTH plasma group showed better quality score. Blastocyst quality by morphological assessment was not mirrored by the transcription levels of various important genes for embryo development whose gene expression profile did not significantly differ among groups. It is likely that the effect of the altered environment provided by plasma from ACTH-treated sows was too short to affect embryo development. Therefore, a brief exposure to an altered endocrine environment may not have harmful consequences for the embryo once fertilisation occurs.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos , Femenino , Fertilización In Vitro/veterinaria , Expresión Génica , Plasma , Embarazo , Porcinos
11.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842637

RESUMEN

Polycystic ovarian syndrome (PCOS) is the main cause of female infertility. It is a multifactorial disorder with varying clinical manifestations including metabolic/endocrine abnormalities, hyperandrogenism, and ovarian cysts, among other conditions. D-Chiro-inositol (DCI) is the main treatment available for PCOS in humans. To address some of the mechanisms of this complex disorder and its treatment, this study examines the effect of DCI on reproduction during the development of different PCOS-associated phenotypes in aged females and two mouse models of PCOS. Aged females (8 months old) were treated or not (control) with DCI for 2 months. PCOS models were generated by treatment with dihydrotestosterone (DHT) on Days 16, 17, and 18 of gestation, or by testosterone propionate (TP) treatment on the first day of life. At two months of age, PCOS mice were treated with DCI for 2 months and their reproductive parameters analyzed. No effects of DCI treatment were produced on body weight or ovary/body weight ratio. However, treatment reduced the number of follicles with an atretic cyst-like appearance and improved embryo development in the PCOS models, and also increased implantation rates in both aged and PCOS mice. DCI modified the expression of genes related to oocyte quality, oxidative stress, and luteal sufficiency in cumulus-oocyte complexes (COCs) obtained from the aged and PCOS models. Further, the phosphorylation of AKT, a main metabolic sensor activated by insulin in the liver, was enhanced only in the DHT group, which was the only PCOS model showing glucose intolerance and AKT dephosphorylation. The effect of DCI in the TP model seemed mediated by its influence on oxidative stress and follicle insufficiency. Our results indicate that DCI works in preclinical models of PCOS and offer insight into its mechanism of action when used to treat this infertility-associated syndrome.


Asunto(s)
Blastocisto/efectos de los fármacos , Infertilidad Femenina/tratamiento farmacológico , Inositol/farmacología , Oocitos/efectos de los fármacos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Envejecimiento , Animales , Blastocisto/fisiología , Células del Cúmulo/efectos de los fármacos , Dihidrotestosterona/toxicidad , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/tratamiento farmacológico , Infertilidad Femenina/etiología , Infertilidad Femenina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos , Oocitos/fisiología , Fosforilación/efectos de los fármacos , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Propionato de Testosterona/toxicidad
12.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527007

RESUMEN

Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.


Asunto(s)
Blastocisto/citología , Ribonucleoproteínas/genética , Factor de Empalme U2AF/genética , Animales , Blastocisto/fisiología , Desarrollo Embrionario/genética , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Intrones , Masculino , Ratones Mutantes , Ratones Transgénicos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
13.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331069

RESUMEN

Mutant mice with respect to the splicing factor Zrsr1 present altered spermatogenesis and infertility. To investigate whether Zrsr1 is involved in the homeostatic control that the hypothalamus exerts over reproductive functions, we first analyzed both differential gene and isoform expression and alternative splicing alterations in Zrsr1 mutant (Zrsr1mu) hypothalamus; second, we analyzed the spontaneous and social behavior of Zrsr1mu mice; and third, we analyzed adult cell proliferation and survival in the Zrsr1mu hypothalamus. The Zrsr1mu hypothalamus showed altered expression of genes and isoforms related to the glutathione metabolic process, synaptonemal complex assembly, mRNA transport, and altered splicing events involving the enrichment of U12-type intron retention (IR). Furthermore, increased IR in U12-containing genes related with the prolactin, progesterone, and gonadotropin-releasing hormone (GnRH) reproductive signaling pathway was observed. This was associated with a hyperactive phenotype in both males and females, with an anxious phenotype in females, and with increased social interaction in males, instead of the classical aggressive behavior. In addition, Zrsr1mu females but not males exhibited reduced cell proliferation in both the hypothalamus and the subventricular zone. Overall, these results suggest that Zrsr1 expression and function are relevant to organization of the hypothalamic cell network controlling behavior.


Asunto(s)
Intrones , Mutación , Neurogénesis , Factores de Empalme de ARN/genética , Empalme del ARN , Empalme Alternativo , Animales , Conducta Animal , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Regulación de la Expresión Génica , Humanos , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Factores de Empalme de ARN/metabolismo , Conducta Social
14.
Mol Reprod Dev ; 86(8): 1033-1043, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31209959

RESUMEN

Although telomere length (TL) shortens with age in most tissues, an age-related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.


Asunto(s)
Oocitos/metabolismo , Espermatozoides/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Animales , Animales no Consanguíneos , Femenino , Masculino , Ratones
15.
BMC Genomics ; 20(1): 202, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871468

RESUMEN

BACKGROUND: Alternative splicing (AS) may play an important role in gonadal sex determination (GSD) in mammals. The present study was designed to identify differentially expressed isoforms and AS modifications accompanying GSD in mice. RESULTS: Using deep RNA-sequencing, we performed a transcriptional analysis of XX and XY gonads during sex determination on embryonic days 11 (E11) and 12 (E12). Analysis of differentially expressed genes (DEG) identified hundreds of genes related to GSD and early sex differentiation that may represent good candidates for sex reversal. Expression at time point E11 in males was significantly enriched in RNA splicing and mRNA processing Gene Ontology terms. Differentially expressed isoform analysis identified hundreds of specific isoforms related to GSD, many of which showed no differences in the DEG analysis. Hundreds of AS events were identified as modified at E11 and E12. Female E11 gonads featured sex-biased upregulation of intron retention (in genes related to regulation of transcription, protein phosphorylation, protein transport and mRNA splicing) and exon skipping (in genes related to chromatin repression) suggesting AS as a post-transcription mechanism that controls sex determination of the bipotential fetal gonad. CONCLUSION: Our data suggests an important role of splicing regulatory mechanisms for sex determination in mice.


Asunto(s)
Empalme Alternativo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Gónadas/metabolismo , Diferenciación Sexual , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones , Isoformas de Proteínas
16.
Mol Reprod Dev ; 86(10): 1292-1306, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30719806

RESUMEN

Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.


Asunto(s)
Desarrollo Embrionario , Técnicas Reproductivas Asistidas/efectos adversos , Estrés Fisiológico , Animales , Bovinos , Técnicas de Cultivo de Embriones , Epigénesis Genética , Femenino , Humanos , Ratones
17.
Biol Reprod ; 100(5): 1180-1192, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30596891

RESUMEN

Advanced age is a risk factor undermining women's fertility. Hence, the optimization of assisted reproduction techniques is an interdisciplinary challenge that requires the improvement of in vitro culture systems. Here, we hypothesize that supplementation of embryo culture medium with extracellular vesicles from endometrial-derived mesenchymal stem cells (EV-endMSCs) may have a positive impact on the embryo competence of aged oocytes. In this work, 24 weeks old B6D2 female mice were used as egg donors and in vitro fertilization assays were performed using males from the same strain (8-12 weeks); the presumptive zygotes were incubated in the presence of 0, 10, 20, 40, or 80 µg/ml of EV-endMSCs. The results from the proteomic analysis of EV-endMSCs and the classification by Reactome pathways allowed us to identify proteins closely related with the fertilization process. Moreover, in our aged murine model, the supplementation of the embryo culture medium with EV-endMSCs improved the developmental competence of the embryos as well as the total blastomere count. Finally, gene expression analysis of murine blastocysts showed significant changes on core genes related to cellular response to oxidative stress, metabolism, placentation, and trophectoderm/inner cell mass formation. In summary, we demonstrate that EV-endMSCs increase the quality of the embryos, and according to proteomic and genomic analysis, presumably by modulating the expression of antioxidant enzymes and promoting pluripotent activity. Therefore, EV-endMSCs could be a valuable tool in human assisted reproduction improving the developmental competence of aged oocytes and increasing the odds of implantation and subsequent delivery.


Asunto(s)
Senescencia Celular/fisiología , Embrión de Mamíferos , Endometrio/citología , Vesículas Extracelulares/fisiología , Edad Materna , Células Madre Mesenquimatosas/ultraestructura , Recuperación del Oocito , Animales , Células Cultivadas , Técnicas de Cocultivo/métodos , Técnicas de Cocultivo/normas , Técnicas de Cocultivo/veterinaria , Técnicas de Cultivo de Embriones/normas , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Fertilización In Vitro/normas , Fertilización In Vitro/veterinaria , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Recuperación del Oocito/métodos , Recuperación del Oocito/normas , Recuperación del Oocito/veterinaria , Oocitos/citología , Oocitos/fisiología , Control de Calidad
18.
Front Cell Dev Biol ; 7: 346, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921857

RESUMEN

Spermatozoa undergo their last phase of spermiogenesis, known as maturation, as they pass through the epididymis. A recent report indicates that mouse immature spermatozoa retrieved from the caput epididymis for intracytoplasmic sperm injection (ICSI) give rise to embryos with multiple developmental defects. Further, these embryos were unable to develop to term after their transfer to surrogate mothers. Herein, we examined the potential of mouse caput spermatozoa to produce normal embryos by comparing the use of caput vs. cauda epididymal spermatozoa for in vitro fertilization (IVF) or ICSI. Two methods for the separation of sperm heads prior to ICSI were also compared: freezing/thawing or drawing through a syringe. We found that in contrast to caudal spermatozoa, caput spermatozoa failed to produce embryos via IVF, confirming their immature state. However, regardless of the method employed for the separation of sperm heads, similar efficiencies of blastocyst production in vitro and development to term after transfer to surrogate mothers were observed following ICSI using both caput and cauda epididymal spermatozoa. It therefore seems that mice spermatozoa recovered from the caput epididymis are as valid as caudal spermatozoa for the production of embryos and offspring by ICSI.

19.
Reprod Domest Anim ; 53 Suppl 2: 46-49, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30238659

RESUMEN

Advanced age reduces the success of in vitro fertilization (IVF) being this effect partly mediated by an overproduction of reactive oxygen species (ROS) that trigger apoptosis. It has been demonstrated that extracellular vesicles derived from endometrial mesenchymal stem cells (EV-endMSCs) exert an antioxidant effect and can be used as IVF coadjutants. In this work, endMSCs were isolated from human menstrual blood (n = 4) and characterized according to multipotentiality and surface marker expression prior EV-endMSCs isolation. Oocytes were obtained from 21 B6D2 mice (24 weeks) and coincubated with sperm from young males (8-12 weeks). Presumptive zygotes were incubated in the presence of 0, 10, 20, 40 or 80 µg/ml of EV-endMSCs in KSOM medium. Blastocyst yield was evaluated, and 25 blastocysts per group were used for qPCR. Blastocyst rate was 29.4% in control; 45.2% for 10 µg/ml, 62.9% for 20 µg/ml, 55.5% for 40 µg/ml and 53.8% in the 80 µg/ml (n = 124-130 oocytes) being all the increases significantly different when compared against control (p < 0.05). The 20-80 µg/ml treatments decreased the expression of glutathione peroxidase (Gpx1), and the 10-40 µg/ml treatments reduced the expression of superoxide dismutase (Sod1; p < 0.05) compared to control; Bax mRNA expression did not vary. Our results suggest that the increased developmental competence of the embryos could be partly mediated by the EV-endMSCs' ROS scavenger activity.


Asunto(s)
Blastocisto/fisiología , Endometrio/fisiología , Vesículas Extracelulares/fisiología , Fertilización In Vitro/veterinaria , Células Madre Mesenquimatosas/citología , Animales , Modelos Animales de Enfermedad , Desarrollo Embrionario , Femenino , Expresión Génica , Humanos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Espermatozoides , Cigoto
20.
Theriogenology ; 119: 156-162, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30015144

RESUMEN

In vitro maturation (IVM) leads to reduced developmental rates compared to the use of in vivo matured oocytes. This reduction can be attributed to the suboptimal environment experienced during IVM, but the use of incompetent oocytes also plays a significant role. The objective of this study has been to characterize the mitochondrial and metabolic differences between competent and incompetent bovine oocytes selected prior to IVM based on Brilliant Cresyl Blue (BCB) staining. BCB selection allowed to sort two populations of cumulus-oocyte complexes (COCs) exhibiting diverse developmental competence despite showing a similar size and thereby being morphologically undistinguishable otherwise. Nuclear maturation rates were similar in both populations, but cleavage and blastocysts rates were significantly higher in BCB+ compared with BCB-. Mitochondrial distribution was similar between both groups, but mtDNA content experienced a 1.9-fold increase between BCB- and BCB+ oocytes, suggesting that a significant mtDNA synthesis must occur at the last stages of follicular development to achieve full competence prior to IVM. Consistently, transcriptional analysis in cumulus cells revealed an upregulation of the mitochondrial transcription factor TFAM in BCB-. Transcriptional analysis also suggested a decrease in both anaerobic glycolysis and pentose phosphate pathway (PPP) in BCB+ COCs, as the anaerobic glycolysis enzymes GAPDH and LDHA and the positive regulator of G6PD activity SIRT2 were upregulated in BCB- cumulus cells. These results suggest that during the final stages of follicular development a significant mtDNA replication must occur to achieve full oocyte developmental competence, and that this replication may be linked to anaerobic glycolysis and PPP activities.


Asunto(s)
Bovinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mitocondrias/fisiología , Folículo Ovárico/fisiología , Animales , ADN Mitocondrial , Femenino , Regulación de la Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oxazinas , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA