Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7872, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550102

RESUMEN

Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca2+ signaling in vivo by expressing a plasma membrane Ca2+ ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca2+ using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca2+ is to amplify functional hyperemia when neuronal activation is prolonged.


Asunto(s)
Hiperemia , Neocórtex , Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Vigilia , Arteriolas , Astrocitos/metabolismo , Circulación Cerebrovascular/fisiología
2.
Cell Rep ; 36(5): 109405, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348138

RESUMEN

Very-low-frequency oscillations in microvascular diameter cause fluctuations in oxygen delivery that are important for fueling the brain and for functional imaging. However, little is known about how the brain regulates ongoing oscillations in cerebral blood flow. In mouse and rat cortical brain slice arterioles, we find that selectively enhancing tone is sufficient to recruit a TRPV4-mediated Ca2+ elevation in adjacent astrocyte endfeet. This endfoot Ca2+ signal triggers COX-1-mediated "feedback vasodilators" that limit the extent of evoked vasoconstriction, as well as constrain fictive vasomotion in slices. Astrocyte-Ptgs1 knockdown in vivo increases the power of arteriole oscillations across a broad range of very low frequencies (0.01-0.3 Hz), including ultra-slow vasomotion (∼0.1 Hz). Conversely, clamping astrocyte Ca2+in vivo reduces the power of vasomotion. These data demonstrate bidirectional communication between arterioles and astrocyte endfeet to regulate oscillatory microvasculature activity.


Asunto(s)
Arteriolas/fisiología , Astrocitos/fisiología , Ciclooxigenasa 1/metabolismo , Retroalimentación Fisiológica , Estrés Mecánico , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Vasoconstricción , Vasodilatación
3.
Nat Commun ; 11(1): 3064, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528004

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Commun ; 11(1): 2014, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332733

RESUMEN

Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled.


Asunto(s)
Astrocitos/metabolismo , Metabolismo Energético/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Estrés Psicológico/metabolismo , Adaptación Psicológica/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Redes y Vías Metabólicas/fisiología , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Técnicas de Placa-Clamp
5.
Nat Neurosci ; 23(3): 398-410, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066984

RESUMEN

In humans and rodents, the perception of control during stressful events has lasting behavioral consequences. These consequences are apparent even in situations that are distinct from the stress context, but how the brain links prior stressful experience to subsequent behaviors remains poorly understood. By assessing innate defensive behavior in a looming-shadow task, we show that the initiation of an escape response is preceded by an increase in the activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus (CRHPVN neurons). This anticipatory increase is sensitive to stressful stimuli that have high or low levels of outcome control. Specifically, experimental stress with high outcome control increases CRHPVN neuron anticipatory activity, which increases escape behavior in an unrelated context. By contrast, stress with no outcome control prevents the emergence of this anticipatory activity and decreases subsequent escape behavior. These observations indicate that CRHPVN neurons encode stress controllability and contribute to shifts between active and passive innate defensive strategies.


Asunto(s)
Hormona Liberadora de Corticotropina/fisiología , Reacción de Fuga/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Estrés Psicológico , Acelerometría , Animales , Anticipación Psicológica/fisiología , Señales (Psicología) , Fenómenos Electrofisiológicos , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Núcleo Hipotalámico Paraventricular/citología , Estimulación Luminosa
6.
Bio Protoc ; 10(22): e3826, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659478

RESUMEN

There has been a clear movement in recent years towards the adoption of more naturalistic experimental regimes for the study of behavior and its underlying neural architecture. Here we provide a protocol that allows experimenters working with mice, to mimic a looming and advancing predatory threat from the sky. This approach is easy to implement and can be combined with sophisticated neural recordings that allow access to real-time activity during behavior. This approach offers another option in a battery of tests that allow for a more comprehensive understanding of defensive behaviors.

7.
Neuron ; 100(5): 1133-1148.e3, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482689

RESUMEN

Dynamic changes in astrocyte free Ca2+ regulate synaptic signaling and local blood flow. Although astrocytes are poised to integrate signals from synapses and the vasculature to perform their functional roles, it remains unclear what dictates astrocyte responses during neurovascular coupling under realistic conditions. We examined peri-arteriole and peri-capillary astrocytes in the barrel cortex of active mice in response to sensory stimulation or volitional behaviors. We observed an AMPA and NMDA receptor-dependent elevation in astrocyte endfoot Ca2+ that followed functional hyperemia onset. This delayed astrocyte Ca2+ signal was dependent on the animal's action at the time of measurement as well as a neurovascular pathway that linked to endothelial-derived nitric oxide. A similar elevation in endfoot Ca2+ was evoked using vascular chemogenetics or optogenetics, and opto-stimulated dilation recruited the same nitric oxide pathway as functional hyperemia. These data show that behavioral state and microvasculature influence astrocyte Ca2+ in active mice. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/fisiología , Conducta Animal , Hiperemia/fisiopatología , Acoplamiento Neurovascular , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/fisiología , Animales , Señalización del Calcio , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/fisiología , Óxido Nítrico/metabolismo , Estimulación Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...