Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 187(11): 2687-2689, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788691

RESUMEN

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Asunto(s)
Akkermansia , Ácidos y Sales Biliares , Publicaciones Periódicas como Asunto , Animales , Humanos , Ratones , Akkermansia/metabolismo , Ácidos y Sales Biliares/metabolismo , Ácido Cólico/metabolismo , Microbioma Gastrointestinal , Hígado/metabolismo , Hepatopatías/metabolismo , Hepatopatías/microbiología , Verrucomicrobia/metabolismo
2.
Elife ; 122023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855835

RESUMEN

Inflammatory gut disorders, including inflammatory bowel disease (IBD), can be impacted by dietary, environmental, and genetic factors. While the incidence of IBD is increasing worldwide, we still lack a complete understanding of the gene-by-environment interactions underlying inflammation and IBD. Here, we profiled the colon transcriptome of 52 BXD mouse strains fed with a chow or high-fat diet (HFD) and identified a subset of BXD strains that exhibit an IBD-like transcriptome signature on HFD, indicating that an interplay of genetics and diet can significantly affect intestinal inflammation. Using gene co-expression analyses, we identified modules that are enriched for IBD-dysregulated genes and found that these IBD-related modules share cis-regulatory elements that are responsive to the STAT2, SMAD3, and REL transcription factors. We used module quantitative trait locus analyses to identify genetic loci associated with the expression of these modules. Through a prioritization scheme involving systems genetics in the mouse and integration with external human datasets, we identified Muc4 and Epha6 as the top candidates mediating differences in HFD-driven intestinal inflammation. This work provides insights into the contribution of genetics and diet to IBD risk and identifies two candidate genes, MUC4 and EPHA6, that may mediate IBD susceptibility in humans.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Ratones , Humanos , Animales , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Sitios de Carácter Cuantitativo , Dieta Alta en Grasa/efectos adversos , Inflamación/genética , Inflamación/complicaciones , Predisposición Genética a la Enfermedad
3.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876915

RESUMEN

During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid activation into proliferating progenitors, a crucial step required to establish a regenerative process known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanistically, we found that lipid overload activates the E2F transcription factors in BECs, which drive cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide new insights into the mechanistic basis of this process, revealing unexpected connections between lipid metabolism, stemness, and regeneration.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Células Epiteliales/metabolismo , División Celular , Lípidos
4.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719750

RESUMEN

The nonessential amino acid asparagine can only be synthesized de novo by the enzymatic activity of asparagine synthetase (ASNS). While ASNS and asparagine have been implicated in the response to numerous metabolic stressors in cultured cells, the in vivo relevance of this enzyme in stress-related pathways remains unexplored. Here, we found ASNS to be expressed in pericentral hepatocytes, a population of hepatic cells specialized in xenobiotic detoxification. ASNS expression was strongly enhanced in 2 models of acute liver injury: carbon tetrachloride (CCl4) and acetaminophen. We found that mice with hepatocyte-specific Asns deletion were more prone to pericentral liver damage than their control littermates after toxin exposure. This phenotype could be reverted by i.v. administration of asparagine. Unexpectedly, the stress-induced upregulation of ASNS involved an ATF4-independent, noncanonical pathway mediated by the nuclear receptor, liver receptor homolog 1 (LRH-1; NR5A2). Altogether, our data indicate that the induction of the asparagine-producing enzyme ASNS acts as an adaptive mechanism to constrain the necrotic wave that follows toxin administration and provide proof of concept that i.v. delivery of asparagine can dampen hepatotoxin-induced pericentral hepatocellular death.


Asunto(s)
Asparagina , Hepatocitos , Animales , Ratones , Aminoácidos , Hígado
5.
Cell Metab ; 34(10): 1594-1610.e4, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36099916

RESUMEN

Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.


Asunto(s)
Ácidos y Sales Biliares , Dieta Alta en Grasa , Animales , Ácidos y Sales Biliares/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Homeostasis , Hormonas/metabolismo , Hígado/metabolismo , Masculino , Ratones , Análisis de Sistemas , Ácido Tauroquenodesoxicólico
6.
J Hepatol ; 77(4): 1071-1082, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35714811

RESUMEN

BACKGROUND & AIMS: Transporters of the SLC25 mitochondrial carrier superfamily bridge cytoplasmic and mitochondrial metabolism by channeling metabolites across mitochondrial membranes and are pivotal for metabolic homeostasis. Despite their physiological relevance as gatekeepers of cellular metabolism, most of the SLC25 family members remain uncharacterized. We undertook a comprehensive tissue distribution analysis of all Slc25 family members across metabolic organs and identified SLC25A47 as a liver-specific mitochondrial carrier. METHODS: We used a murine loss-of-function model to unravel the role of this transporter in mitochondrial and hepatic homeostasis. We performed extensive metabolic phenotyping and molecular characterization of newly generated Slc25a47hep-/- and Slc25a47-Fgf21hep-/- mice. RESULTS: Slc25a47hep-/- mice displayed a wide variety of metabolic abnormalities, as a result of sustained energy deficiency in the liver originating from impaired mitochondrial respiration. This mitochondrial phenotype was associated with an activation of the mitochondrial stress response (MSR) in the liver, and the development of fibrosis, which was exacerbated upon feeding a high-fat high-sucrose diet. The MSR induced the secretion of several mitokines, amongst which FGF21 played a preponderant role on systemic physiology. To dissect the FGF21-dependent and -independent physiological changes induced in Slc25a47hep-/- mice, we generated a double Slc25a47-Fgf21hep-/- mouse model and demonstrated that several aspects of the hypermetabolic state were driven by hepatic secretion of FGF21. On the other hand, the metabolic fuel inflexibility observed in Slc25a47hep-/- mice could not be rescued with the genetic removal of Fgf21. CONCLUSION: Collectively, our data place the Slc25a47 locus at the center of mitochondrial homeostasis, which upon dysfunction triggers robust liver-specific and systemic adaptive stress responses. The prominent role of the Slc25a47 locus in hepatic fibrosis identifies this carrier, or its transported metabolite, as a potential target for therapeutic intervention. LAY SUMMARY: Herein, we report the importance of a locus containing a liver-specific gene coding for a mitochondrial transport protein called SLC25A47. Mitochondria are the powerhouses of cells. They are crucial for metabolism and energy generation. We show that mice with genetic disruption of the Slc25a47 locus cannot maintain mitochondrial homeostasis (balance), leading to wide-ranging problems in the liver that have far-reaching physiological consequences.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Cirrosis Hepática , Hígado , Proteínas de Transporte de Membrana Mitocondrial , Animales , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Sacarosa
7.
Adv Sci (Weinh) ; 9(17): e2200626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435331

RESUMEN

Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.


Asunto(s)
Busulfano , Resistencia a Antineoplásicos , Factores de Transcripción de Tipo Kruppel , Proteínas del Tejido Nervioso , Receptores Acoplados a Proteínas G , Proteína p53 Supresora de Tumor , Animales , Busulfano/metabolismo , Busulfano/farmacología , Homeostasis , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Espermatogonias/metabolismo , Proteína p53 Supresora de Tumor/genética
9.
Nat Metab ; 3(5): 595-603, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34031591

RESUMEN

Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain1, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3-8. Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho-ROCK-actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Anorexia/etiología , Anorexia/metabolismo , Línea Celular , Ingestión de Alimentos , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas
10.
Cell Metab ; 33(7): 1483-1492.e10, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887197

RESUMEN

Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Peso Corporal/genética , Metabolismo Energético/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/genética , Obesidad/prevención & control , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/fisiología
11.
Physiol Rev ; 101(2): 683-731, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32790577

RESUMEN

Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Ácidos y Sales Biliares/fisiología , Animales , Ácidos y Sales Biliares/biosíntesis , Enfermedades de los Conductos Biliares/metabolismo , Enfermedades de los Conductos Biliares/fisiopatología , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Hígado/metabolismo
12.
Gastroenterology ; 159(3): 956-968.e8, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485177

RESUMEN

BACKGROUND & AIMS: Renewal and patterning of the intestinal epithelium is coordinated by intestinal stem cells (ISCs); dietary and metabolic factors provide signals to the niche that control ISC activity. Bile acids (BAs), metabolites in the gut, signal nutrient availability by activating the G protein-coupled bile acid receptor 1 (GPBAR1, also called TGR5). TGR5 is expressed in the intestinal epithelium, but it is not clear how its activation affects ISCs and regeneration of the intestinal epithelium. We studied the role of BAs and TGR5 in intestinal renewal, and regulation of ISC function in mice and intestinal organoids. METHODS: We derived intestinal organoids from wild-type mice and Tgr5-/- mice, incubated them with BAs or the TGR5 agonist INT-777, and monitored ISC function by morphologic analyses and colony-forming assays. We disrupted Tgr5 specifically in Lgr5-positive ISCs in mice (Tgr5ISC-/- mice) and analyzed ISC number, proliferation, and differentiation by flow cytometry, immunofluorescence, and organoid assays. Tgr5ISC-/- mice were given cholecystokinin; we measured the effects of BA release into the intestinal lumen and on cell renewal. We induced colitis in Tgr5ISC-/- mice by administration of dextran sulfate sodium; disease severity was determined based on body weight, colon length, and histopathology analysis of colon biopsies. RESULTS: BAs and TGR5 agonists promoted growth of intestinal organoids. Administration of cholecystokinin to mice resulted in acute release of BAs into the intestinal lumen and increased proliferation of the intestinal epithelium. BAs and Tgr5 expression in ISCs were required for homeostatic intestinal epithelial renewal and fate specification, and for regeneration after colitis induction. Tgr5ISC-/- mice developed more severe colitis than mice without Tgr5 disruption in ISCs. ISCs incubated with INT-777 increased activation of yes-associated protein 1 (YAP1) and of its upstream regulator SRC. Inhibitors of YAP1 and SRC prevented organoid growth induced by TGR5 activation. CONCLUSIONS: BAs promote regeneration of the intestinal epithelium via activation of TGR5 in ISCs, resulting in activation of SRC and YAP and activation of their target genes. Release of endogenous BAs in the intestinal lumen is sufficient to promote ISC renewal and drives regeneration in response to injury.


Asunto(s)
Células Madre Adultas/fisiología , Ácidos y Sales Biliares/metabolismo , Colitis/patología , Mucosa Intestinal/patología , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/fisiología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/fisiología , Células Cultivadas , Ácidos Cólicos/farmacología , Colitis/inducido químicamente , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Organoides , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
13.
Nat Commun ; 9(1): 245, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339725

RESUMEN

Remodelling of energy storing white fat into energy expending beige fat could be a promising strategy to reduce adiposity. Here, we show that the bile acid-responsive membrane receptor TGR5 mediates beiging of the subcutaneous white adipose tissue (scWAT) under multiple environmental cues including cold exposure and prolonged high-fat diet feeding. Moreover, administration of TGR5-selective bile acid mimetics to thermoneutral housed mice leads to the appearance of beige adipocyte markers and increases mitochondrial content in the scWAT of Tgr5 +/+ mice but not in their Tgr5 -/- littermates. This phenotype is recapitulated in vitro in differentiated adipocytes, in which TGR5 activation increases free fatty acid availability through lipolysis, hence fuelling ß-oxidation and thermogenic activity. TGR5 signalling also induces mitochondrial fission through the ERK/DRP1 pathway, further improving mitochondrial respiration. Taken together, these data identify TGR5 as a druggable target to promote beiging with potential applications in the management of metabolic disorders.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Dinámicas Mitocondriales , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Blanco/citología , Animales , Diferenciación Celular/genética , Línea Celular , Ácidos Grasos no Esterificados/metabolismo , Humanos , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo , Temperatura
14.
Circulation ; 138(7): 696-711, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29348263

RESUMEN

BACKGROUND: Anthracyclines, such as doxorubicin (DOX), are potent anticancer agents for the treatment of solid tumors and hematologic malignancies. However, their clinical use is hampered by cardiotoxicity. This study sought to investigate the role of phosphoinositide 3-kinase γ (PI3Kγ) in DOX-induced cardiotoxicity and the potential cardioprotective and anticancer effects of PI3Kγ inhibition. METHODS: Mice expressing a kinase-inactive PI3Kγ or receiving PI3Kγ-selective inhibitors were subjected to chronic DOX treatment. Cardiac function was analyzed by echocardiography, and DOX-mediated signaling was assessed in whole hearts or isolated cardiomyocytes. The dual cardioprotective and antitumor action of PI3Kγ inhibition was assessed in mouse mammary tumor models. RESULTS: PI3Kγ kinase-dead mice showed preserved cardiac function after chronic low-dose DOX treatment and were protected against DOX-induced cardiotoxicity. The beneficial effects of PI3Kγ inhibition were causally linked to enhanced autophagic disposal of DOX-damaged mitochondria. Consistently, either pharmacological or genetic blockade of autophagy in vivo abrogated the resistance of PI3Kγ kinase-dead mice to DOX cardiotoxicity. Mechanistically, PI3Kγ was triggered in DOX-treated hearts, downstream of Toll-like receptor 9, by the mitochondrial DNA released by injured organelles and contained in autolysosomes. This autolysosomal PI3Kγ/Akt/mTOR/Ulk1 signaling provided maladaptive feedback inhibition of autophagy. PI3Kγ blockade in models of mammary gland tumors prevented DOX-induced cardiac dysfunction and concomitantly synergized with the antitumor action of DOX by unleashing anticancer immunity. CONCLUSIONS: Blockade of PI3Kγ may provide a dual therapeutic advantage in cancer therapy by simultaneously preventing anthracyclines cardiotoxicity and reducing tumor growth.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Cardiopatías/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Quinoxalinas/farmacología , Tiazolidinedionas/farmacología , Carga Tumoral/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cardiotoxicidad , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Doxorrubicina/toxicidad , Femenino , Genes erbB-2 , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/patología , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
15.
FASEB J ; 31(9): 3848-3857, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487283

RESUMEN

Bile acids and epithelial-derived human ß-defensins (HßDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HßD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HßD1 and HßD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HßD1 and HßD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 µM), but not by the farnesoid X receptor agonist, GW4064 (10 µM). INT-777 also stimulated colonic HßD1 and HßD2 release from wild-type, but not Takeda GPCR 5-/-, mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 µM), inhibited DCA-induced HßD2, but not HßD1, release. We conclude that bile acids can differentially regulate colonic epithelial HßD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human ß-defensin-1 and -2 secretion by colonic epithelial cells.


Asunto(s)
Colon/citología , Ácido Desoxicólico/farmacología , Mucosa Intestinal/citología , Ácido Ursodesoxicólico/farmacología , beta-Defensinas/metabolismo , Animales , Línea Celular , Ácido Desoxicólico/administración & dosificación , Relación Dosis-Respuesta a Droga , Células Epiteliales , Humanos , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Técnicas de Cultivo de Tejidos , Ácido Ursodesoxicólico/administración & dosificación , beta-Defensinas/genética
16.
J Hepatol ; 66(1): 132-141, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27663419

RESUMEN

BACKGROUND & AIMS: To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD. METHODS: As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD+), we hypothesized that overactivation of PARPs drives NAD+ depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD+ and activate NAD+-dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD. RESULTS: The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD+ levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD+, increasing mitochondrial biogenesis and ß-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent. CONCLUSIONS: Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse models of NAFLD confer a protection against its development. PARP inhibitors may therefore represent a novel and practical pharmacological approach for treating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ftalazinas/farmacología , Piperazinas/farmacología , Animales , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo
17.
Sci Signal ; 9(459): ra124, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999173

RESUMEN

Mobilization of neutrophils from the bone marrow determines neutrophil blood counts and thus is medically important. Balanced neutrophil mobilization from the bone marrow depends on the retention-promoting chemokine CXCL12 and its receptor CXCR4 and the egression-promoting chemokine CXCL2 and its receptor CXCR2. Both pathways activate the small guanosine triphosphatase Rac, leaving the role of this signaling event in neutrophil retention and egression ambiguous. On the assumption that active Rac determines persistent directional cell migration, we generated a mathematical model to link chemokine-mediated Rac modulation to neutrophil egression time. Our computer simulation indicated that, in the bone marrow, where the retention signal predominated, egression time strictly depended on the time it took Rac to return to its basal activity (namely, adaptation). This prediction was validated in mice lacking the Rac inhibitor ArhGAP15. Neutrophils in these mice showed prolonged Rac adaptation and cell-autonomous retention in the bone marrow. Our model thus demonstrates that mobilization in the presence of two spatially defined opposing chemotactic cues strictly depends on inhibitors shaping the time course of signal adaptation. Furthermore, our findings might help to find new modes of intervention to treat conditions characterized by excessively low or high circulating neutrophils.


Asunto(s)
Médula Ósea/enzimología , Neutrófilos/enzimología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Ratones Noqueados , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas de Unión al GTP rac/genética
18.
Hepatology ; 63(4): 1190-204, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26404765

RESUMEN

UNLABELLED: With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD(+) ) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD(+) biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1- and SIRT3-dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic ß-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 knockout mice (Sirt1(hep-/-) ), whereas apolipoprotein E-deficient mice (Apoe(-/-) ) challenged with a high-fat high-cholesterol diet affirmed the use of NR in other independent models of NAFLD. CONCLUSION: Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Hígado Graso/patología , NAD/metabolismo , Niacinamida/análogos & derivados , Respuesta de Proteína Desplegada/efectos de los fármacos , Análisis de Varianza , Animales , Área Bajo la Curva , Biopsia con Aguja , Dieta Alta en Grasa/métodos , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Inmunohistoquímica , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/efectos de los fármacos , Niacinamida/farmacología , Compuestos de Piridinio , Distribución Aleatoria , Sensibilidad y Especificidad , Resultado del Tratamiento
19.
Trends Pharmacol Sci ; 36(12): 847-857, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26541439

RESUMEN

In the past decade substantial progress has been made in understanding how the insurgence of chronic low-grade inflammation influences the physiology of several metabolic diseases. Tissue-resident immune cells have been identified as central players in these processes, linking inflammation to metabolism. The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and its activation mediates potent anti-inflammatory effects. Herein, we summarize recent advances in TGR5 research, focusing on the downstream effector pathways that are modulated by TGR5 activators, and on its therapeutic potential in inflammatory and metabolic diseases.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo
20.
Nat Commun ; 6: 7629, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26134028

RESUMEN

Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates ß-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.


Asunto(s)
Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/genética , Mucosa Intestinal/metabolismo , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Anticolesterolemiantes/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ácidos y Sales Biliares/metabolismo , Glucemia/metabolismo , Clorhidrato de Colesevelam/farmacología , Colon/citología , Colon/metabolismo , Dieta Alta en Grasa , Péptido 1 Similar al Glucagón/metabolismo , Glucólisis , Humanos , Íleon/citología , Íleon/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Intestinos/citología , Yeyuno/citología , Yeyuno/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Proteínas Nucleares/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proglucagón/efectos de los fármacos , Proglucagón/genética , Proglucagón/metabolismo , Receptores Acoplados a Proteínas G/genética , Secuestrantes/farmacología , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...