Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Neural Netw ; 17(4): 1039-49, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16856665

RESUMEN

Sequential minimal optimization (SMO) is one popular algorithm for training support vector machine (SVM), but it still requires a large amount of computation time for solving large size problems. This paper proposes one parallel implementation of SMO for training SVM. The parallel SMO is developed using message passing interface (MPI). Specifically, the parallel SMO first partitions the entire training data set into smaller subsets and then simultaneously runs multiple CPU processors to deal with each of the partitioned data sets. Experiments show that there is great speedup on the adult data set and the Mixing National Institute of Standard and Technology (MNIST) data set when many processors are used. There are also satisfactory results on the Web data set.


Asunto(s)
Inteligencia Artificial , Análisis Numérico Asistido por Computador , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...