Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(6): 925-944.e10, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38754417

RESUMEN

Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial ß-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.


Asunto(s)
Microbioma Gastrointestinal , Glucuronidasa , Homeostasis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Glucuronidasa/metabolismo , Ratones Endogámicos C57BL , Serotonina/metabolismo , Glucurónidos/metabolismo , Humanos , Intestinos/microbiología , Masculino , Vida Libre de Gérmenes
2.
Nat Methods ; 20(5): 714-722, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012480

RESUMEN

Major aims of single-cell proteomics include increasing the consistency, sensitivity and depth of protein quantification, especially for proteins and modifications of biological interest. Here, to simultaneously advance all these aims, we developed prioritized Single-Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while maximizing instrument time spent analyzing identifiable peptides, thus increasing proteome depth. These strategies increased the sensitivity, data completeness and proteome coverage over twofold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport, similarly across both treatment conditions. This covariation is coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at http://scp.slavovlab.net/pSCoPE .


Asunto(s)
Proteoma , Proteómica , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas , Péptidos/química , Macrófagos
3.
Nat Methods ; 20(3): 375-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864200

RESUMEN

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Asunto(s)
Benchmarking , Proteómica , Benchmarking/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis
4.
Nat Chem Biol ; 18(8): 850-858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35654846

RESUMEN

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.


Asunto(s)
Antígeno B7-H1 , Leucocitos Mononucleares , Comunicación Celular , Flavinas , Inmunoterapia
5.
Nat Protoc ; 16(12): 5398-5425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34716448

RESUMEN

Many biological systems are composed of diverse single cells. This diversity necessitates functional and molecular single-cell analysis. Single-cell protein analysis has long relied on affinity reagents, but emerging mass-spectrometry methods (either label-free or multiplexed) have enabled quantifying >1,000 proteins per cell while simultaneously increasing the specificity of protein quantification. Here we describe the Single Cell ProtEomics (SCoPE2) protocol, which uses an isobaric carrier to enhance peptide sequence identification. Single cells are isolated by FACS or CellenONE into multiwell plates and lysed by Minimal ProteOmic sample Preparation (mPOP), and their peptides labeled by isobaric mass tags (TMT or TMTpro) for multiplexed analysis. SCoPE2 affords a cost-effective single-cell protein quantification that can be fully automated using widely available equipment and scaled to thousands of single cells. SCoPE2 uses inexpensive reagents and is applicable to any sample that can be processed to a single-cell suspension. The SCoPE2 workflow allows analyzing ~200 single cells per 24 h using only standard commercial equipment. We emphasize experimental steps and benchmarks required for achieving quantitative protein analysis.


Asunto(s)
Péptidos/aislamiento & purificación , Proteoma/aislamiento & purificación , Proteómica/métodos , Análisis de la Célula Individual/métodos , Animales , Benchmarking , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Células HeLa , Humanos , Indicadores y Reactivos/química , Ratones , Oocitos/citología , Oocitos/metabolismo , Péptidos/química , Péptidos/clasificación , Cultivo Primario de Células , Proteoma/química , Proteoma/clasificación , Células RAW 264.7 , Análisis de la Célula Individual/normas , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Células U937
6.
ACS Infect Dis ; 7(3): 535-543, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33587590

RESUMEN

Infections with Pseudomonas aeruginosa are a looming threat to public health. New treatment strategies are needed to combat this pathogen, for example, by blocking the production of virulence factors like pyocyanin. A photoaffinity analogue of an antipyocyanin compound was developed to interrogate the inhibitor's molecular mechanism of action. While we sought to develop antivirulence inhibitors, the proteomics results suggested that the compounds had antibiotic adjuvant activity. Unexpectedly, we found that these compounds amplify the bactericidal activity of colistin, a well-characterized antibiotic, suggesting they may represent a first-in-class antibiotic adjuvant therapy. Analogues have the potential not only to widen the therapeutic index of cationic antimicrobial peptides like colistin, but also to be effective against colistin-resistant strains, strengthening our arsenal to combat P. aeruginosa infections.


Asunto(s)
Antibacterianos , Colistina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos , Pseudomonas aeruginosa , Piocianina
7.
Genome Biol ; 22(1): 50, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504367

RESUMEN

BACKGROUND: Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis. RESULTS: To overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantifies over 3042 proteins in 1490 single monocytes and macrophages in 10 days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. Parallel measurements of transcripts by 10× Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus, SCoPE2 supports quantification with improved count statistics. This allowed exploring regulatory interactions, such as interactions between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53. CONCLUSIONS: Even in a homogeneous environment, macrophage proteomes are heterogeneous. This heterogeneity correlates to the inflammatory axis of classically and alternatively activated macrophages. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.


Asunto(s)
Macrófagos/metabolismo , Proteómica , Transcriptoma , Línea Celular , Citocinas/genética , Proteínas en la Dieta , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Activación de Macrófagos , Monocitos/metabolismo , Fenotipo , Proteoma/genética
8.
Nat Chem Biol ; 13(10): 1081-1087, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805803

RESUMEN

Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.


Asunto(s)
Ácidos Glicéricos/metabolismo , Fosfoglicerato Mutasa/metabolismo , Serina/metabolismo , Humanos , Fosfoglicerato Mutasa/deficiencia , Células Tumorales Cultivadas
9.
Curr Opin Biotechnol ; 43: 134-140, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28025112

RESUMEN

When cells mobilize nutrients from protein, they generate a fingerprint of peptide fragments that reflects the net action of proteases and the identities of the affected proteins. Analyzing these mixtures falls into a grey area between proteomics and metabolomics that is poorly served by existing technology. Herein, we describe an emerging digestomics strategy that bridges this gap and allows mixtures of proteolytic fragments to be quantitatively mapped with an amino acid level of resolution. We describe recent successes using this technique, including a case where digestomics provided the link between hemoglobin digestion by the malaria parasite and the world-wide distribution of chloroquine resistance. We highlight other areas of microbiology and cancer research that are well-suited to this emerging technology.


Asunto(s)
Hemoglobinas/metabolismo , Malaria/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium/efectos de los fármacos , Proteolisis
10.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872277

RESUMEN

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Asunto(s)
Desnitrificación , Ecosistema , Metano/biosíntesis , Microbiota , Azufre/metabolismo , Procesos Autotróficos , Carbono/metabolismo , Nitrógeno/metabolismo , Sudáfrica
11.
Proc Natl Acad Sci U S A ; 113(44): E6757-E6765, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791083

RESUMEN

Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.


Asunto(s)
Fosfatos de Inositol/metabolismo , Redes y Vías Metabólicas/fisiología , Polifosfatos/metabolismo , Transducción de Señal/fisiología , Difosfatos/metabolismo , Células Eucariotas/metabolismo , Glucosa/metabolismo , Magnesio , Nucleótidos/metabolismo , Fosforilación , Proteoma , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Science ; 354(6311)2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789812

RESUMEN

Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics but do not capture the extent to which metabolite and enzyme concentrations vary across physiological states and, therefore, how cellular reactions are regulated. We measured enzyme and metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then assessed the extent to which flux can be explained by a Michaelis-Menten relationship between enzyme, substrate, product, and potential regulator concentrations. This revealed three previously unrecognized instances of cross-pathway regulation, which we biochemically verified. One of these involved inhibition of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates of cellular metabolic reactions, with metabolite concentrations collectively having more than double the physiological impact of enzymes.


Asunto(s)
Redes y Vías Metabólicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Citratos/metabolismo , Glucólisis , Cinética , Nitrógeno/deficiencia , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química
13.
BMC Immunol ; 17(1): 24, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435737

RESUMEN

BACKGROUND: Major histocompatibility complex class I (MHCI) proteins present antigenic peptides for immune surveillance and play critical roles in nervous system development and plasticity. Most MHCI are transmembrane proteins. The extracellular domain of MHCI interacts with immunoreceptors, peptides, and co-receptors to mediate immune signaling. While the cytoplasmic domain also plays important roles in endocytic trafficking, cross-presentation of extracellularly derived antigens, and CTL priming, the molecular mediators of cytoplasmic signaling by MHCI remain largely unknown. RESULTS: Here we show that the cytoplasmic domain of MHCI contains putative protein-protein interaction domains known as PDZ (PSD95/disc large/zonula occludens-1) ligands. PDZ ligands are motifs that bind to PDZ domains to organize and mediate signaling at cell-cell contacts. PDZ ligands are short, degenerate motifs, and are therefore difficult to identify via sequence homology alone, but several lines of evidence suggest that putative PDZ ligand motifs in MHCI are under positive selective pressure. Putative PDZ ligands are found in all of the 99 MHCI proteins examined from diverse species, and are enriched in the cytoplasmic domain, where PDZ interactions occur. Both the position of the PDZ ligand and the class of ligand motif are conserved across species, as well as among genes within a species. Non-synonymous substitutions, when they occur, frequently preserve the motif. Of the many specific possible PDZ ligand motifs, a handful are strikingly and selectively overrepresented in MHCI's cytoplasmic domain, but not elsewhere in the same proteins. Putative PDZ ligands in MHCI encompass conserved serine and tyrosine residues that are targets of phosphorylation, a post-translational modification that can regulate PDZ interactions. Finally, proof-of-principle in vitro interaction assays demonstrate that the cytoplasmic domains of particular MHCI proteins can bind directly and specifically to PDZ1 and PDZ4&5 of MAGI-1, and identify a conserved PDZ ligand motif in the classical MHCI H2-K that is required for this interaction. CONCLUSIONS: These results identify cryptic protein interaction motifs in the cytoplasmic domain of MHCI. In so doing, they suggest that the cytoplasmic domain of MHCI could participate in previously unsuspected PDZ mediated protein-protein interactions at neuronal as well as immunological synapses.


Asunto(s)
Secuencias de Aminoácidos/genética , Citoplasma/metabolismo , Antígenos H-2/metabolismo , Antígenos HLA/metabolismo , Sinapsis Inmunológicas/metabolismo , Sistema Nervioso/inmunología , Dominios PDZ/genética , Dominios y Motivos de Interacción de Proteínas/genética , Animales , Presentación de Antígeno , Antígenos H-2/genética , Antígenos HLA/genética , Humanos , Vigilancia Inmunológica , Ratones , Fosforilación , Análisis de Secuencia de Proteína , Serina , Transducción de Señal , Tirosina
14.
Sci Rep ; 6: 19722, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26813983

RESUMEN

Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite 'acetylome', characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome.


Asunto(s)
Lisina/metabolismo , Plasmodium/metabolismo , Proteoma , Proteómica , Proteínas Protozoarias/metabolismo , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional , Proteínas de Unión al ADN/metabolismo , Ontología de Genes , Plasmodium/genética , Plasmodium falciparum/metabolismo , Posición Específica de Matrices de Puntuación , Biosíntesis de Proteínas , Proteómica/métodos , Transcripción Genética
15.
Dev Cell ; 33(5): 522-34, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26004507

RESUMEN

During cell division, polarized epithelial cells employ mechanisms to preserve cell polarity and tissue integrity. In dividing cells of the mammalian skin, planar cell polarity (PCP) is maintained through the bulk internalization, equal segregation, and polarized recycling of cortical PCP proteins. The dramatic redistribution of PCP proteins coincides precisely with cell-cycle progression, but the mechanisms coordinating PCP and mitosis are unknown. Here we identify Plk1 as a master regulator of PCP dynamics during mitosis. Plk1 interacts with core PCP component Celsr1 via a conserved polo-box domain (PBD)-binding motif, localizes to mitotic endosomes, and directly phosphorylates Celsr1. Plk1-dependent phosphorylation activates the endocytic motif specifically during mitosis, allowing bulk recruitment of Celsr1 into endosomes. Inhibiting Plk1 activity blocks PCP internalization and perturbs PCP asymmetry. Mimicking dileucine motif phosphorylation is sufficient to drive Celsr1 internalization during interphase. Thus, Plk1-mediated phosphorylation of Celsr1 ensures that PCP redistribution is precisely coordinated with mitotic entry.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Endosomas/metabolismo , Queratinocitos/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Endocitosis/fisiología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Interfase , Queratinocitos/citología , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Quinasa Tipo Polo 1
16.
Proteomics ; 15(12): 2006-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867546

RESUMEN

Replication of human cytomegalovirus (HCMV) is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of HCMV by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high-resolution MS. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteoma/análisis , Proteómica/métodos , Western Blotting , Células Cultivadas , Cromatografía Liquida , Infecciones por Citomegalovirus/virología , Fibroblastos/virología , Humanos , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Espectrometría de Masas en Tándem , Replicación Viral
17.
J Virol ; 89(6): 3209-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25568206

RESUMEN

UNLABELLED: Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE: The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Adenoviridae/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Sistemas de Lectura Abierta , Proteína p53 Supresora de Tumor/metabolismo , Adenoviridae/genética , Infecciones por Adenoviridae/genética , Infecciones por Adenoviridae/virología , Proteínas E4 de Adenovirus/genética , Línea Celular , Humanos , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética
18.
Anal Chem ; 86(22): 11298-305, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25333600

RESUMEN

Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).


Asunto(s)
Quelantes/química , Compuestos Organometálicos/química , Programas Informáticos , Algoritmos , Cromatografía Liquida , Isótopos/química , Espectrometría de Masas
19.
Proc Natl Acad Sci U S A ; 111(41): E4350-8, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267629

RESUMEN

RcsF (regulator of capsule synthesis) is an outer membrane (OM) lipoprotein that functions to sense defects such as changes in LPS. However, LPS is found in the outer leaflet, and RcsF was thought to be tethered to the inner leaflet by its lipidated N terminus, raising the question of how it monitors LPS. We show that RcsF has a transmembrane topology with the lipidated N terminus on the cell surface and the C-terminal signaling domain in the periplasm. Strikingly, the short, unstructured, charged transmembrane domain is threaded through the lumen of ß-barrel OM proteins where it is protected from the hydrophobic membrane interior. We present evidence that these unusual complexes, which contain one protein inside another, are formed by the Bam complex that assembles all ß-barrel proteins in the OM. The ability of the Bam complex to expose lipoproteins at the cell surface underscores the mechanistic versatility of the ß-barrel assembly machine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Lipoproteínas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
20.
J Hematol Oncol ; 7: 56, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25200342

RESUMEN

BACKGROUND: Identification of novel genetic risk factors is imperative for a better understanding of B lymphomagenesis and for the development of novel therapeutic strategies. TRAF3, a critical regulator of B cell survival, was recently recognized as a tumor suppressor gene in B lymphocytes. The present study aimed to identify novel oncogenes involved in malignant transformation of TRAF3-deficient B cells. METHODS: We used microarray analysis to identify genes differentially expressed in TRAF3-/- mouse splenic B lymphomas. We employed lentiviral vector-mediated knockdown or overexpression to manipulate gene expression in human multiple myeloma (MM) cell lines. We analyzed cell apoptosis and proliferation using flow cytometry, and performed biochemical studies to investigate signaling mechanisms. To delineate protein-protein interactions, we applied affinity purification followed by mass spectrometry-based sequencing. RESULTS: We identified mutated in colorectal cancer (MCC) as a gene strikingly up-regulated in TRAF3-deficient mouse B lymphomas and human MM cell lines. Aberrant up-regulation of MCC also occurs in a variety of primary human B cell malignancies, including non-Hodgkin lymphoma (NHL) and MM. In contrast, MCC expression was not detected in normal or premalignant TRAF3-/- B cells even after treatment with B cell stimuli, suggesting that aberrant up-regulation of MCC is specifically associated with malignant transformation of B cells. In elucidating the functional roles of MCC in malignant B cells, we found that lentiviral shRNA vector-mediated knockdown of MCC induced apoptosis and inhibited proliferation in human MM cells. Experiments of knockdown and overexpression of MCC allowed us to identify several downstream targets of MCC in human MM cells, including phospho-ERK, c-Myc, p27, cyclin B1, Mcl-1, caspases 8 and 3. Furthermore, we identified 365 proteins (including 326 novel MCC-interactors) in the MCC interactome, among which PARP1 and PHB2 were two hubs of MCC signaling pathways in human MM cells. CONCLUSIONS: Our results indicate that in sharp contrast to its tumor suppressive role in colorectal cancer, MCC functions as an oncogene in B cells. Our findings suggest that MCC may serve as a diagnostic marker and therapeutic target in B cell malignancies, including NHL and MM.


Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/genética , Genes MCC/genética , Oncogenes/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Immunoblotting , Inmunoprecipitación , Linfoma no Hodgkin/genética , Ratones , Ratones Noqueados , Mieloma Múltiple/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Prohibitinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor 3 Asociado a Receptor de TNF/deficiencia , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...