RESUMEN
The outer mitochondrial membrane (OMM) is essential for cellular homeostasis. Yet little is known of the mechanisms that remodel it during natural stresses. We found that large "SPOTs" (structures positive for OMM) emerge during Toxoplasma gondii infection in mammalian cells. SPOTs mediated the depletion of the OMM proteins mitofusin 1 and 2, which restrict parasite growth. The formation of SPOTs depended on the parasite effector TgMAF1 and the host mitochondrial import receptor TOM70, which is required for optimal parasite proliferation. TOM70 enabled TgMAF1 to interact with the host OMM translocase SAM50. The ablation of SAM50 or the overexpression of an OMM-targeted protein promoted OMM remodeling independently of infection. Thus, Toxoplasma hijacks the formation of SPOTs, a cellular response to OMM stress, to promote its growth.
Asunto(s)
Membranas Mitocondriales/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Animales , Línea Celular , GTP Fosfohidrolasas/metabolismo , Humanos , Membranas Intracelulares/fisiología , Membranas Intracelulares/ultraestructura , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Unión Proteica , Estrés Fisiológico , Toxoplasma/crecimiento & desarrollo , Toxoplasma/ultraestructura , Toxoplasmosis/parasitología , Vacuolas/fisiología , Vacuolas/ultraestructuraRESUMEN
The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.
Asunto(s)
Mitocondrias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Animales , Femenino , Fibroblastos/citología , Fibroblastos/parasitología , Prepucio/citología , Sitios Genéticos , Interacciones Huésped-Parásitos/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Toxoplasma/genéticaRESUMEN
In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous.