Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 187(5): 1109-1126.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38382525

RESUMEN

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.


Asunto(s)
Vesículas Citoplasmáticas , Oocitos , Agregado de Proteínas , Animales , Femenino , Ratones , Autofagosomas , Vesículas Citoplasmáticas/metabolismo , Lisosomas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis
2.
Cells ; 12(15)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566036

RESUMEN

MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.


Asunto(s)
MicroARNs , Animales , Ratones , MicroARNs/metabolismo , Tapsigargina/farmacología , Diferenciación Celular/genética , Células Madre Embrionarias , Homeostasis
3.
Dev Cell ; 57(11): 1316-1330.e7, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35597240

RESUMEN

The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.


Asunto(s)
Dinaminas/metabolismo , Mitofagia , Animales , Apoptosis/fisiología , Mamíferos/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología
4.
Sci Adv ; 8(15): eabn4935, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417229

RESUMEN

Transition from maternal to embryonic transcriptional control is crucial for embryogenesis. However, alternative splicing regulation during this process remains understudied. Using transcriptomic data from human, mouse, and cow preimplantation development, we show that the stage of zygotic genome activation (ZGA) exhibits the highest levels of exon skipping diversity reported for any cell or tissue type. Much of this exon skipping is temporary, leads to disruptive noncanonical isoforms, and occurs in genes enriched for DNA damage response in the three species. Two core spliceosomal components, Snrpb and Snrpd2, regulate these patterns. These genes have low maternal expression at ZGA and increase sharply thereafter. Microinjection of Snrpb/d2 messenger RNA into mouse zygotes reduces the levels of exon skipping at ZGA and leads to increased p53-mediated DNA damage response. We propose that mammalian embryos undergo an evolutionarily conserved, developmentally programmed splicing failure at ZGA that contributes to the attenuation of cellular responses to DNA damage.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cigoto , Animales , Bovinos , Daño del ADN , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Genoma , Mamíferos/genética , Ratones , Cigoto/metabolismo
5.
PLoS Biol ; 20(4): e3001615, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476669

RESUMEN

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Asunto(s)
Placenta , Proteínas de Unión al ARN , Empalme Alternativo/genética , Animales , Euterios/genética , Femenino , Placenta/metabolismo , Embarazo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
Nat Metab ; 3(8): 1091-1108, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34253906

RESUMEN

Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from development to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mitochondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function triggers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.


Asunto(s)
Competencia Celular , Embrión de Mamíferos , Desarrollo Embrionario , Mitocondrias/genética , Mitocondrias/metabolismo , Animales , Biomarcadores , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Análisis de la Célula Individual/métodos
7.
Cell Rep ; 9(1): 153-165, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284787

RESUMEN

Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP's catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.


Asunto(s)
Pérdida del Embrión/metabolismo , Células Endoteliales/citología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Pérdida del Embrión/genética , Embrión de Mamíferos , Células Endoteliales/metabolismo , Femenino , Linfotoxina-alfa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Saco Vitelino/irrigación sanguínea
8.
Genes Dev ; 28(17): 1873-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25184675

RESUMEN

Mammalian primed pluripotent stem cells have been shown to be highly susceptible to cell death stimuli due to their low apoptotic threshold, but how this threshold is regulated remains largely unknown. Here we identify microRNA (miRNA)-mediated regulation as a key mechanism controlling apoptosis in the post-implantation epiblast. Moreover, we found that three miRNA families, miR-20, miR-92, and miR-302, control the mitochondrial apoptotic machinery by fine-tuning the levels of expression of the proapoptotic protein BIM. These families therefore represent an essential buffer needed to maintain cell survival in stem cells that are primed for not only differentiation but also cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteína 11 Similar a Bcl2 , Supervivencia Celular/genética , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Células Madre Pluripotentes/citología
9.
Dev Cell ; 26(1): 19-30, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23867226

RESUMEN

A fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that, although not adversely affecting viability, would compromise their ability to contribute to further development. Here, we show that cell competition is a mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective bone morphogenetic protein signaling or defective autophagy or that are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptosis-dependent manner and is mediated by secreted factors. Furthermore, during this process, we find that establishment of differential c-Myc levels is critical and that c-Myc overexpression is sufficient to induce competitive behavior in ESCs. Cell competition is, therefore, a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance.


Asunto(s)
Comunicación Celular , Diferenciación Celular , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Animales , Apoptosis , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Línea Celular , Técnicas de Cocultivo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tamoxifeno/farmacología , Tetraploidía , Factores de Tiempo
10.
RNA Biol ; 9(1): 12-21, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22258141

RESUMEN

The structural complexity of the vertebrate brain is mirrored by its unparalleled transcriptome complexity. In particular, two post-transcriptional processes, alternative splicing and RNA editing, greatly diversify brain transcriptomes. Here we report a close connection between these two processes: we show A-to-I RNA editing in Nova1, a key brain-specific regulator of alternative splicing. Nova1 editing levels increase during embryonic development in mouse and chicken brains and show significant variation across postnatal brain regions. Evolutionary conservation of both editing and editing-associated RNA secondary structure of the Nova1 mRNA for 300 million years attests to the functional importance of Nova1 editing. Using a combination of different assays in human HEK293T cell lines, we report a novel post-translational role for this RNA editing. Whereas functional assays showed no effect of RNA editing on the regulatory splicing activity of the encoded proteins, we found evidence that edited forms exhibit reduced proteasome targeting and increased protein half-life. In addition, we found evidence for similar regulation of protein half-life by an evolutionarily conserved alternative splicing event in Nova1. These results open new venues of research on the multi-level integration of gene expression by: (1) revealing the novel role of RNA editing in regulating protein stability, and (2) establishing protein stability as a new target of multifaceted regulation.


Asunto(s)
Adenosina/metabolismo , Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Evolución Molecular , Inosina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Animales , Antígenos de Neoplasias/genética , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Pollos/genética , Pollos/metabolismo , Secuencia Conservada , Regulación de la Expresión Génica , Células HEK293 , Semivida , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Conformación de Ácido Nucleico , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Transfección , Xenopus laevis/genética , Xenopus laevis/metabolismo
11.
Curr Biol ; 21(15): 1289-95, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21802298

RESUMEN

Nodal/activin signaling plays a key role in anterior-posterior (A-P) axis formation by inducing the anterior visceral endoderm (AVE), the extraembryonic signaling center that initiates anterior patterning in the embryo. Here we provide direct evidence that the mitogen-activated protein kinase (MAPK) p38 regulates AVE specification through a crosstalk with the Nodal/activin signaling pathway. We show that p38 activation is directly stimulated by Nodal/activin and fails to be maintained upon inhibition of this pathway both in vivo and in vitro. In turn, p38 strengthens the Nodal signaling response by phosphorylating the Smad2 linker region and enhancing the level of Smad2 activation. Furthermore, we demonstrate that this p38 amplification loop is essential for correct specification of the AVE in two ways: first, by showing that inhibiting p38 activity in 5.5 days postcoitum embryo cultures leads to a switch from AVE to an extraembryonic visceral endoderm cell identity, and second, by demonstrating that genetically reducing p38 activity in a Nodal-sensitive background leads to a failure of AVE specification in vivo. Collectively, our results reveal a novel role for p38 in regulating the threshold of Nodal signaling and propose a new mechanism by which A-P axis development can be reinforced during early embryogenesis.


Asunto(s)
Activinas/metabolismo , Tipificación del Cuerpo , Proteína Nodal/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Mutación , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/genética
12.
Cell Cycle ; 10(4): 584-91, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21293181

RESUMEN

At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.


Asunto(s)
Embrión de Mamíferos/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Apoptosis/genética , Ciclo Celular , Diferenciación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/fisiología , Homeostasis , Ratones , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(46): 19955-60, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21048080

RESUMEN

Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Evolución Molecular , Redes Reguladoras de Genes , Mamíferos/embriología , Mamíferos/genética , Células Madre Pluripotentes/metabolismo , Animales , Secuencia de Bases , Embrión de Pollo , Secuencia Conservada/genética , Elementos de Facilitación Genéticos/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Datos de Secuencia Molecular , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Especificidad de la Especie
14.
Dev Cell ; 19(2): 207-19, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20708584

RESUMEN

The two first cell fate decisions taken in the mammalian embryo generate three distinct cell lineages: one embryonic, the epiblast, and two extraembryonic, the trophoblast and primitive endoderm. miRNAs are essential for early development, but it is not known if they are utilized in the same way in these three lineages. We find that in the pluripotent epiblast they inhibit apoptosis by blocking the expression of the proapoptotic protein Bcl2l11 (Bim) but play little role in the initiation of gastrulation. In contrast, in the trophectoderm, miRNAs maintain the trophoblast stem cell compartment by directly inhibiting expression of Cdkn1a (p21) and Cdkn1c (p57), and in the primitive endoderm, they prevent differentiation by maintaining ERK1/2 phosphorylation through blocking the expression of Mapk inhibitors. Therefore, we show that there are fundamental differences in how stem cells maintain their developmental potential in embryonic and extraembryonic tissues through miRNAs.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , MicroARNs/metabolismo , Células Madre/fisiología , Animales , Apoptosis/fisiología , Tipificación del Cuerpo , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Linaje de la Célula , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Estratos Germinativos/anatomía & histología , Estratos Germinativos/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , MicroARNs/genética , Ribonucleasa III , Células Madre/citología
15.
Dev Dyn ; 239(2): 620-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20014105

RESUMEN

In the mouse blastocyst, Eomes and Cdx2 are critical for establishing the trophoectoderm, the precursor of the placenta. To better understand how the trophoectoderm lineage arose in mammals during evolution, we examined the expression of their orthologues in the pregastrulation chick embryo and found that, while both genes are expressed in extraembryonic tissues, their temporal pattern of expression differs from what occurs in mouse. Moreover, we failed to detect expression of other genes specific from the mouse trophoectoderm in extraembryonic regions of the chick. Also unlike the mouse, chick Eomes is expressed in primordial germ cells. Finally, conserved noncoding elements in the Eomes genomic region are unable to drive trophoectoderm restricted expression in the mouse blastocyst, but do so in conserved sites of expression such as the forebrain. These results suggest that critical changes in the gene regulatory networks controlling extraembryonic development accompanied the appearance of the trophoectoderm in mammals.


Asunto(s)
Evolución Biológica , Linaje de la Célula , Embrión de Pollo/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Blastocisto/metabolismo , Factor de Transcripción CDX2 , Secuencia Conservada , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Placenta/embriología , Embarazo
16.
Int J Dev Biol ; 53(8-10): 1367-78, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19247937

RESUMEN

The sequencing of the whole genome of multiple species provides us with the instruction book of how to build an organism and make it work, plus a detailed history of how diversity was generated during evolution. Unfortunately, we still understand only a small fraction, which is locating where genes are and deciphering the proteins they code for. The next step is to understand how the correct amount of gene products are produced in space and time to obtain a fully functioning organism, from the egg to the adult. This is what is known as the regulatory genome, a term coined by Eric H. Davidson. In this review, we examine what we know about gene regulation from a genomic point of view, revise the current in silico, in vitro and in vivo methodological approaches to study transcriptional regulation, and point to the power of phylogenetic footprinting as a guide to regulatory element discovery. The advantages and limitations of each approach are considered, with the emerging view that only large-scale studies and data-crunching will give us insight into the language of genomic regulatory systems, and allow the discovery of regulatory codes in the genome.


Asunto(s)
Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes , Genoma/genética , Genómica/métodos , Animales , Evolución Molecular , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Humanos , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...