Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 159: 111582, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940785

RESUMEN

Application of plant-based sources for food, e.g. fava bean, is challenged by consumer acceptance. This study attempts to understand how ingredient processing and application conditions drive fava bean flavor. An approach was used to evaluate odor perception along with the analysis of headspace volatile compounds detected during ingredient utilization. Precisely, a protein-rich ingredient, i.e. air classified fava bean concentrate, selected for its high industrial potential, was modified by pH (2, 4, 6.4 and 11), temperature (55, 75 and 95 °C) and treatment duration (30 and 360 min). The experimental design produced 36 different modified ingredients, which were further subjected to two distinct models of beverage application (pH 4 and 7). Results showed that the "green" perception detected in the initial concentrate evolved more into "cooked" perception with ingredient processing. Application conditions drove aroma changes, ranging from a "sweet" to "rancid" perception when changed from neutral to acidic pH. Aldehydes were generated in many ingredients, as well as furanoids at pH 2, terpenoids at pH 4, alcohols at pH 6.4 and ketones at pH 11. Lipid oxidation was hypothesized as the major contributor to the aroma composition in the ingredient suspensions. Reactions involving protein, sugar and carotenoid degradation, including Maillard reaction and caramelization, also played a role in the flavor generation. Different suspension matrices at different pH during ingredient application might have influenced the release of pH-dependent volatiles. This data allows to better link the role of process conditions in the generation and release of hypothesized odor-active molecules associated with different odor sensory notes. Thus, various flavor profiles can be driven by process conditions for fava bean concentrates - making it promising for several food applications.


Asunto(s)
Odorantes , Vicia faba , Reacción de Maillard , Percepción , Gusto
2.
Foods ; 11(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35627054

RESUMEN

Soft bread has a significant relevance in modern diets, and its nutritional impact on human health can be substantial. Within this product category, there is an extensive range of ingredients, formulations, and processing methods, which all contribute to the vast diversity found in the final products. This work compared the impact of three different processing methods (industrial, artisanal, and homemade preparation) on the technological (formulation and processing, as they are interconnected in real-life conditions), nutritional, and physicochemical properties of soft bread. In total, 24 types of soft bread were analyzed: 10 industrial, 6 artisanal, and 8 homemade. Although production diagrams were similar among the three methods, industrial recipes contained on average more ingredients and more additives. Industrial bread was lower in saturated fat compared to the other two groups, but contained more sugar than homemade bread. The physical properties of all loaves were comparable, with the exception of higher crumb elasticity in industrial bread compared to homemade. An analysis of volatile molecules revealed more lipid oxidation markers in industrial bread, more fermentation markers in artisanal bread, and fewer markers of Maillard reactions in homemade bread. Chemical reactions during processing seem to be the principal criterion making possible to discriminate the different processing methods. These results offer a quantitative assessment of the differences within a single product category, reflecting the real-world choices for consumers.

3.
J Vis Exp ; (159)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32478756

RESUMEN

Lipoproteins from proteobacteria are posttranslationally modified by fatty acids derived from membrane phospholipids by the action of three integral membrane enzymes, resulting in triacylated proteins. The first step in the lipoprotein modification pathway involves the transfer of a diacylglyceryl group from phosphatidylglycerol onto the prolipoprotein, resulting in diacylglyceryl prolipoprotein. In the second step, the signal peptide of prolipoprotein is cleaved, forming an apolipoprotein, which in turn is modified by a third fatty acid derived from a phospholipid. This last step is catalyzed by apolipoprotein N-acyltransferase (Lnt). The lipoprotein modification pathway is essential in most γ-proteobacteria, making it a potential target for the development of novel antibacterial agents. Described here is a sensitive assay for Lnt that is compatible with high-throughput screening of small inhibitory molecules. The enzyme and substrates are membrane-embedded molecules; therefore, the development of an in vitro test is not straightforward. This includes the purification of the active enzyme in the presence of detergent, the availability of alkyne-phospholipids and diacylglyceryl peptide substrates, and the reaction conditions in mixed micelles. Furthermore, in order to use the activity test in a high-throughput screening (HTS) setup, direct readout of the reaction product is preferred over coupled enzymatic reactions. In this fluorometric enzyme assay, the alkyne-triacylated peptide product is rendered fluorescent through a click-chemistry reaction and detected in a multiwell plate format. This method is applicable to other acyltransferases that use fatty acid-containing substrates, including phospholipids and acyl-CoA.


Asunto(s)
Aciltransferasas/metabolismo , Química Clic/métodos , Pruebas de Enzimas/métodos , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Ácidos Grasos , Fibroblastos/metabolismo , Fluorescencia , Humanos , Lipoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteobacteria/metabolismo , Especificidad por Sustrato
4.
Food Microbiol ; 80: 18-24, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30704593

RESUMEN

Phenolic compounds are well known for their antimicrobial activity. They may provide an interesting solution to ensure food safety by preventing the growth of foodborne pathogens while addressing the wishes of consumers for the use of natural preservatives in food and favoring the reuse of agro-industry byproducts. However, their mechanism of action is still not very well understood. Here, we aimed to decipher the complex mechanism of action of eight phenolic acids by decomposing their effects, such as the general effect of the decrease of extracellular pH (γ(pH)) and specific inhibitory effects of the undissociated (γ(Au)) and dissociated (γ(Ad)) forms. We thus developed three different models and applied them to a dataset of Listeria monocytogenes growth rates experimentally obtained in the presence of various concentrations of phenolic acids at several pHs. The model that best fits the dataset was selected for each phenolic acid to explore the potential mechanisms. The results show that the antimicrobial activity is mainly due to the effect of the undissociated forms, except for chlorogenic and gallic acids, for which the antimicrobial activity is mainly due to a decrease in extracellular pH. In addition, the dissociated forms of p-coumaric and ferulic acids show significant inhibitory activity.


Asunto(s)
Antibacterianos/farmacología , Hidroxibenzoatos/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Modelos Biológicos , Recuento de Colonia Microbiana , Inocuidad de los Alimentos , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/química , Pruebas de Sensibilidad Microbiana
5.
Front Microbiol ; 10: 137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787916

RESUMEN

Natural phenolic compounds are found in large quantities in plants and plant extracts and byproducts from agro-industries. They could be used to ensure food quality and safety due to their antimicrobial properties demonstrated in systems such as culture media. The aim of this study was to evaluate the ability of two natural phenolic compounds, ferulic acid and eugenol, to maintain their inhibitory activity against the growth of Listeria monocytogenes in an oil-in-water emulsion, simulating a complex food system. The minimum inhibitory concentration (MIC) of each phenolic compound was first determined in culture medium, consisting of TS broth and an added emulsifier. Whey proteins and Tween 80 increased the MIC of the antimicrobial activity of eugenol. The MIC of ferulic acid was less affected by the addition of Tween 80. The inhibitory activities of both phenolic compounds were then compared at the same concentration in emulsions and their corresponding aqueous phases by following the growth of L. monocytogenes by plate counting. In emulsified systems, eugenol lost the high inhibitory activity observed in the aqueous phase, whereas ferulic acid retained it. The partition coefficient (logPoct/wat) appears to be a key factor. Eugenol (logPoct/wat = 2.61) dispersed in the aqueous phase intercalates into the bacterial membrane and has high antimicrobial activity. In contrast, it likely preferentially partitions into the lipid droplets when dispersed in an emulsion, consequently losing its antimicrobial activity. As ferulic acid is more hydrophilic, a higher proportion probably remains in the aqueous phase of the emulsion, retaining its antimicrobial activity.

6.
J Sci Food Agric ; 98(14): 5401-5408, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29675999

RESUMEN

BACKGROUND: Phenolic compounds present a potential solution to ensure food quality and safety. Indeed, they can limit oxidation reactions and bacterial growth in food products. Although their antioxidant mechanisms of action are well known, their antibacterial ones are less well understood, especially in light of their chemical structures. The aim of this study was first to quantify both aspects of a series of natural phenolic compounds and then link these activities to their chemical structure. RESULTS: We evaluated antioxidant activity by measuring the capacity of phenolic compounds to delay free linoleic acid oxidation caused by the action of a hydrophilic azo-radical initiator (AAPH). We evaluated antibacterial activity by measuring the growth inhibition of Listeria monocytogenes and determining the non-inhibitory and minimum inhibitory concentrations for each compound. Compounds with ortho-diphenolic structures were the best antioxidants, whereas those belonging to the simple phenol category were the best antibacterial compounds. CONCLUSION: The physico-chemical properties of the compounds influenced both activities but not in the same way. The chemical environment of the phenolic group and the presence of delocalization structures are the most important parameters for antioxidant activity, whereas the partition coefficient, logP, is one of the most important factors involved in antibacterial activity. © 2018 Society of Chemical Industry.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/química , Ácidos Grasos Insaturados/química , Listeria monocytogenes/efectos de los fármacos , Fenoles/química , Fenoles/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Listeria monocytogenes/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...