Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 246: 114979, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36495628

RESUMEN

New therapeutic strategies for glioblastoma treatment, especially tackling the tumour's glioblastoma stem cell (GSC) component, are an urgent medical need. Recently, mitochondrial translation inhibition has been shown to affect GSC growth, clonogenicity, and self-renewal capability, therefore becoming an attractive therapeutic target. The combination of streptogramins B and A antibiotics quinupristin/dalfopristin (Q/D), which inhibits mitochondrial ribosome function, affects GSCs more effectively in vitro than the standard of care temozolomide. Here, docking calculations based on the cryo-EM structure of the Q/D-bound mitochondrial ribosome have been used to develop a series of streptogramin A derivatives. We obtained twenty-two new and known molecules starting from the dalfopristin and virginiamycin M1 scaffolds. A structure-activity relationship refinement was performed to evaluate the capability of these compounds to suppress GSC growth and inhibit mitochondrial translation, either alone or in combination with quinupristin. Finally, quantitative ultra HPLC-mass spectrometry allowed us to assess the cell penetration of some of these derivatives. Among all, the fluorine derivatives of dalfopristin and virginiamycin M1, (16R)-1e and (16R)-2e, respectively, and flopristin resulted in being more potent than the corresponding lead compounds and penetrating to a greater extent into the cells. We, therefore, propose these three compounds for further evaluation in vivo as antineoplastic agents.


Asunto(s)
Glioblastoma , Estreptograminas , Humanos , Estreptogramina A , Glioblastoma/tratamiento farmacológico , Antibacterianos/química , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína , Pruebas de Sensibilidad Microbiana
2.
Front Cell Dev Biol ; 11: 1293420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213308

RESUMEN

The nucleolus is a subnuclear compartment critical in ribosome biogenesis and cellular stress responses. These mechanisms are governed by a complex interplay of proteins, including NOC1, a member of the NOC family of nucleolar proteins responsible for controlling rRNA processing and ribosomal maturation. This study reveals a novel relationship between NOC1 and MYC transcription factor, known for its crucial role in controlling ribosomal biogenesis, cell growth, and proliferation. Here, we demonstrate that NOC1 functions as a direct target of MYC, as it is transcriptionally induced through a functional MYC-binding E-box sequence in the NOC1 promoter region. Furthermore, protein interactome analysis reveals that NOC1-complex includes the nucleolar proteins NOC2 and NOC3 and other nucleolar components such as Nucleostemin1 Ns1 transporters of ribosomal subunits and components involved in rRNA processing and maturation. In response to MYC, NOC1 expression and localization within the nucleolus significantly increase, suggesting a direct functional link between MYC activity and NOC1 function. Notably, NOC1 over-expression leads to the formation of large nuclear granules and enlarged nucleoli, which co-localize with nucleolar fibrillarin and Ns1. Additionally, we demonstrate that NOC1 expression is necessary for Ns1 nucleolar localization, suggesting a role for NOC1 in maintaining nucleolar structure. Finally, the co-expression of NOC1 and MYC enhances nucleolus size and maintains their co-localization, outlining another aspect of the cooperation between NOC1 and MYC in nucleolar dynamics. This study also reveals an enrichment with NOC1 with few proteins involved in RNA processing, modification, and splicing. Moreover, proteins such as Ythdc1, Flacc, and splenito are known to mediate N6-methyladenosine (m6A) methylation of mRNAs in nuclear export, revealing NOC1's potential involvement in coordinating RNA splicing and nuclear mRNA export. In summary, we uncovered novel roles for NOC1 in nucleolar homeostasis and established its direct connection with MYC in the network governing nucleolar structure and function. These findings also highlight NOC1's interaction with proteins relevant to specific RNA functions, suggesting a broader role in addition to its control of nucleolar homeostasis and providing new insight that can be further investigated.

3.
ACS Pharmacol Transl Sci ; 5(10): 872-891, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36268123

RESUMEN

YTHDF proteins bind the N 6-methyladenosine (m6A)-modified mRNAs, influencing their processing, stability, and translation. Therefore, the members of this protein family play crucial roles in gene regulation and several physiological and pathophysiological conditions. YTHDF proteins contain a hydrophobic pocket that accommodates the m6A embedded in the RRACH consensus sequence on mRNAs. We exploited the presence of this cage to set up an m6A-competitive assay and performed a high-throughput screen aimed at identifying ligands binding in the m6A pocket. We report the organoselenium compound ebselen as the first-in-class inhibitor of the YTHDF m6A-binding domain. Ebselen, whose interaction with YTHDF proteins was validated via orthogonal assays, cannot discriminate between the binding domains of the three YTHDF paralogs but can disrupt the interaction of the YTHDF m6A domain with the m6A-decorated mRNA targets. X-ray, mass spectrometry, and NMR studies indicate that in YTHDF1 ebselen binds close to the m6A cage, covalently to the Cys412 cysteine, or interacts reversibly depending on the reducing environment. We also showed that ebselen engages YTHDF proteins within cells, interfering with their mRNA binding. Finally, we produced a series of ebselen structural analogs that can interact with the YTHDF m6A domain, proving that ebselen expansion is amenable for developing new inhibitors. Our work demonstrates the feasibility of drugging the YTH domain in YTHDF proteins and opens new avenues for the development of disruptors of m6A recognition.

4.
Br J Cancer ; 127(5): 824-835, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35715634

RESUMEN

BACKGROUND: Glioblastoma is the most aggressive form of brain cancer, characterised by high proliferation rates and cell invasiveness. Despite advances in surgery and radio-chemotherapy, patients continue to have poor prognoses, with a survival rate of 14-15 months. Thus, new therapeutic strategies are needed. Non-ionising electromagnetic fields represent an emerging option given the potential advantages of safety, low toxicity and the possibility to be combined with other therapies. METHODS: Here, the anticancer activity of quantum molecular resonance (QMR) was investigated. For this purpose, three glioblastoma cell lines were tested, and the QMR effect was evaluated on cancer cell proliferation rate and aggressiveness. To clarify the QMR mechanism of action, the proteomic asset after stimulation was delineated. Mesenchymal stromal cells and astrocytes were used as healthy controls. RESULTS: QMR affected cancer cell proliferation, inducing a significant arrest of cell cycle progression and reducing cancer tumorigenicity. These parameters were not altered in healthy control cells. Proteomic analysis suggested that QMR acts not only on DNA replication but also on the machinery involved in the mitotic spindle assembly and chromosome segregation. Moreover, in a combined therapy assessment, QMR significantly enhanced temozolomide efficacy. CONCLUSIONS: QMR technology appears to be a promising tool for glioblastoma treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Puntos de Control del Ciclo Celular , Línea Celular , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Proteómica , Temozolomida/farmacología
5.
Eur J Cell Biol ; 101(2): 151206, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158302

RESUMEN

Multipotent stem cells persist within the stromal vascular fraction (SVF) of adipose tissue during adulthood. These cells, commonly referred to as adipose-derived stromal cells (ASC), have been extensively investigated over the past years as a promising therapeutic tool based on their regenerative and immunomodulatory properties. However, how ASC might mirror the age-related alteration of the fat they reside in remains unclear. Herein, we show that inguinal adipose tissue in mice turns from brown/beige- to white-like with age and resident ASC readily mirror these changes both at mRNA and microRNA transcriptional level. Mechanistically, our data suggest that these brown/age-related changes in ASC transcription rely on changes in the activity of E2F1 and NFkB transcription factors.


Asunto(s)
Tejido Adiposo , Células del Estroma , Animales , Ratones
6.
J Cell Sci ; 134(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096605

RESUMEN

Dysregulated immunity and widespread metabolic dysfunctions are the most relevant hallmarks of the passing of time over the course of adult life, and their combination at midlife is strongly related to increased vulnerability to diseases; however, the causal connection between them remains largely unclear. By combining multi-omics and functional analyses of adipose-derived stromal cells established from young (1 month) and midlife (12 months) mice, we show that an increase in expression of interferon regulatory factor 7 (IRF7) during adult life drives major metabolic changes, which include impaired mitochondrial function, altered amino acid biogenesis and reduced expression of genes involved in branched-chain amino acid (BCAA) degradation. Our results draw a new paradigm of aging as the 'sterile' activation of a cell-autonomous pathway of self-defense and identify a crucial mediator of this pathway, IRF7, as driver of metabolic dysfunction with age.


Asunto(s)
Aminoácidos de Cadena Ramificada , Factor 7 Regulador del Interferón , Tejido Adiposo/metabolismo , Envejecimiento/genética , Animales , Factor 7 Regulador del Interferón/metabolismo , Ratones , Células del Estroma/metabolismo
7.
iScience ; 24(3): 102197, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33733063

RESUMEN

Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the OCT4 and YTHDF1 promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.

8.
Elife ; 102021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594971

RESUMEN

A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.


Asunto(s)
ARN Largo no Codificante/metabolismo , Ribosomas/metabolismo , Animales , Ratones , Células Madre Embrionarias de Ratones , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteómica , ARN Largo no Codificante/genética , Ribosomas/genética
9.
Nat Genet ; 52(12): 1397-1411, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169020

RESUMEN

The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.


Asunto(s)
Anomalías Múltiples/genética , Núcleo Celular/fisiología , Cromatina/metabolismo , Cara/anomalías , Haploinsuficiencia/genética , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , Enfermedades Vestibulares/genética , Células 3T3 , Animales , Línea Celular , Linaje de la Célula/genética , Condrocitos/citología , Condrogénesis/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Osteocitos/citología , Osteogénesis/genética , Proteínas del Grupo Polycomb/genética , Estrés Mecánico
10.
Front Mol Biosci ; 7: 220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005630

RESUMEN

Post-transcriptional regulation (PTR) of gene expression is a powerful determinant of cellular phenotypes. The 5' and 3' untranslated regions of the mRNA (UTRs) mediate this role through sequence and secondary structure elements bound by RNA-binding proteins (RBPs) and non-coding RNAs. While functional regions in the 3'UTRs have been extensively studied, the 5'UTRs are still relatively uncharacterized. To fill this gap, we used a computational approach exploiting phylogenetic conservation to identify hyperconserved elements in human 5'UTRs (5'HCEs). Our assumption was that 5'HCEs would represent evolutionarily stable and hence important PTR sites. We identified over 5000 5'HCEs occurring in 10% of human protein-coding genes. These sequence elements are rather short and mostly found in narrowly-spaced clusters. 5'HCEs-containing genes are enriched in essential cellular functions and include 20% of all homeotic genes. Homeotic genes are essential transcriptional regulators, driving body plan and neuromuscular development. However, the role of PTR in their expression is mostly unknown. By integrating computational and experimental approaches we identified RBMX as the initiator RBP of a post-transcriptional cascade regulating many homeotic genes. This work thus establishes 5'HCEs as mediators of essential post-transcriptional regulatory networks.

11.
ACS Appl Bio Mater ; 3(12): 8361-8374, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019608

RESUMEN

The in vitro degradation profile and the cytotoxicity of the degradation products of a silk fibroin (SF)-based nerve conduit (SilkBridge), with a complex three-layered wall architecture comprising both native and regenerated (electrospun) fibers, are reported. The bacterial protease type XIV from Streptomyces griseus was used as a hydrolytic agent at three different enzyme/substrate ratios (1:8, 1:80, and 1:800 w/w) to account for the different susceptibility to degradation of the native and regenerated components. The incubation time was extended up to 91 days. At fixed time points, the remaining device, the insoluble debris, and the incubation buffers containing soluble degradation products were separated and analyzed. The electrospun fibers forming the inner and outer layers of the conduit wall were almost completely degraded within 10 days of incubation at an enzyme/substrate ratio of 1:80 w/w. The progression of degradation was highlighted by the emergence of zones of erosion and discontinuity along the electrospun fibers, weakening of the electrospun layers, and decrease in resistance to compressive stress. Native SF microfibers forming the middle layer of the conduit wall displayed a higher resistance to enzymatic degradation. When incubated at an enzyme/substrate ratio of 1:8 w/w, the weight decreased gradually over the incubation time as a consequence of fiber erosion and fragmentation. Analogously, the tensile properties markedly decreased. Both spectroscopic and thermal analyses confirmed the gradual increase in the crystalline character of the fibers. The incubation buffers containing the soluble degradation products were subjected to cytotoxicity testing with human HEK293 cells and mouse neuroblastoma N2a cells. No detrimental effects on cell viability were observed, suggesting that the degradation products do not retain any toxic property. Finally, the mass spectrometry analysis of degradation products showed that the SF polypeptides recovered in the incubation buffers were representative of the aminoacidic sequence of the fibroin light chain and of the highly repetitive fibroin heavy chain, indicating that virtually the entire sequence of the fibroin protein constituent of SilkBridge was degraded.

12.
Front Neurosci ; 13: 1070, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680811

RESUMEN

The amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneurons death. Mutations in the superoxide dismutase 1 (SOD1) protein have been identified to be related to the disease. Beyond the different altered pathways, the mitochondrial dysfunction is one of the major features that leads to the selective death of motoneurons in ALS. The NSC-34 cell line, overexpressing human SOD1(G93A) mutant protein [NSC-34(G93A)], is considered an optimal in vitro model to study ALS. Here we investigated the energy metabolism in NSC-34(G93A) cells and in particular the effect of the mutated SOD1(G93A) protein on the mitochondrial respiratory capacity (complexes I-IV) by high resolution respirometry (HRR) and cytofluorimetry. We demonstrated that NSC-34(G93A) cells show a reduced mitochondrial oxidative capacity. In particular, we found significant impairment of the complex I-linked oxidative phosphorylation, reduced efficiency of the electron transfer system (ETS) associated with a higher rate of dissipative respiration, and a lower membrane potential. In order to rescue the effect of the mutated SOD1 gene on mitochondria impairment, we evaluated the efficacy of the exosomes, isolated from adipose-derived stem cells, administrated on the NSC-34(G93A) cells. These data show that ASCs-exosomes are able to restore complex I activity, coupling efficiency and mitochondrial membrane potential. Our results improve the knowledge about mitochondrial bioenergetic defects directly associated with the SOD1(G93A) mutation, and prove the efficacy of adipose-derived stem cells exosomes to rescue the function of mitochondria, indicating that these vesicles could represent a valuable approach to target mitochondrial dysfunction in ALS.

13.
Mol Biol Cell ; 29(26): 3067-3081, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30354839

RESUMEN

The RBP associated with lethal yellow mutation (RALY) is a member of the heterogeneous nuclear ribonucleoprotein family whose transcriptome and interactome have been recently characterized. RALY binds poly-U rich elements within several RNAs and regulates the expression as well as the stability of specific transcripts. Here we show that RALY binds PRMT1 mRNA and regulates its expression. PRMT1 catalyzes the arginine methylation of Fused in Sarcoma (FUS), an RNA-binding protein that interacts with RALY. We demonstrate that RALY down-regulation decreases protein arginine N-methyltransferase 1 levels, thus reducing FUS methylation. It is known that mutations in the FUS nuclear localization signal (NLS) retain the protein to the cytosol, promote aggregate formation, and are associated with amyotrophic lateral sclerosis. Confirming that inhibiting FUS methylation increases its nuclear import, we report that RALY knockout enhances FUS NLS mutants' nuclear translocation, hence decreasing aggregate formation. Furthermore, we characterize the RNA-dependent interaction of RALY with FUS in motor neurons. We show that mutations in FUS NLS as well as in RALY NLS reciprocally alter their localization and interaction with target mRNAs. These data indicate that RALY's activity is impaired in FUS pathology models, raising the possibility that RALY might modulate disease onset and/or progression.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neuronas Motoras/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína FUS de Unión a ARN/genética , Proteínas Represoras/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Línea Celular Tumoral , Embrión de Mamíferos , Regulación de la Expresión Génica , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/antagonistas & inhibidores , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Ratones , Neuronas Motoras/citología , Mutación , Señales de Localización Nuclear , Cultivo Primario de Células , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Médula Espinal/citología , Médula Espinal/metabolismo
14.
Mol Cell ; 71(2): 256-270.e10, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029004

RESUMEN

The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR. HuD binds many mRNAs encoding mTORC1-responsive ribosomal proteins and translation factors. Altered HuD expression correlates with the translation efficiency of these mRNAs and overall protein synthesis, in a mTORC1-independent fashion. The predominant HuD target is the abundant, small non-coding RNA Y3, amounting to 70% of the HuD interaction signal. Y3 functions as a molecular sponge for HuD, dynamically limiting its recruitment to polysomes and its activity as a translation and neuron differentiation enhancer. These findings uncover an alternative route to the mTORC1 pathway for translational control in motor neurons that is tunable by a small non-coding RNA.


Asunto(s)
Proteína 4 Similar a ELAV/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neuronas Motoras/fisiología , ARN Pequeño no Traducido/genética , Regiones no Traducidas 3' , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Animales , Línea Celular , Proteína 4 Similar a ELAV/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neuronas Motoras/metabolismo , Neurogénesis/genética , Polirribosomas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo
15.
Exp Cell Res ; 340(1): 150-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26708289

RESUMEN

Therapeutic strategies for the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) have not yet provided satisfactory results. Interest in stem cells for the treatment of neurodegenerative diseases is increasing and their beneficial action seems to be due to a paracrine effect via the release of exosomes, main mediators of cell-cell communication. Here we wished to assess, in vitro, the efficacy of a novel non-cell therapeutic approach based on the use of exosomes derived from murine adipose-derived stromal cells on motoneuron-like NSC-34 cells expressing ALS mutations, and used as in vitro models of disease. In particular, we set out to investigate the effect of exosomes on NSC-34 naïve cells and NSC-34 cells overexpressing human SOD1(G93A) or SOD1(G37R) or SOD1(A4V) mutants, exposed to oxidative stress. The data presented here indicate for the first time that exosomes (0.2 µg/ml) are able to protect NSC-34 cells from oxidative damage, which is one of the main mechanism of damage in ALS, increasing cell viability. These data highlight a promising role of exosomes derived from stem cells for potential therapeutic applications in motoneuron disease.


Asunto(s)
Tejido Adiposo/citología , Esclerosis Amiotrófica Lateral/patología , Exosomas/metabolismo , Modelos Biológicos , Fármacos Neuroprotectores , Células Madre/citología , Células del Estroma/citología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Mutación , Estrés Oxidativo/genética
16.
Translation (Austin) ; 2(1): e27738, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26779400

RESUMEN

Post-transcriptional regulation (PTR) of gene expression is now recognized as a major determinant of cell phenotypes. The recent availability of methods to map protein-RNA interactions in entire transcriptomes such as RIP, CLIP and their variants, together with global polysomal and ribosome profiling techniques, are driving the exponential accumulation of vast amounts of data on mRNA contacts in cells, and of corresponding predictions of PTR events. However, this exceptional quantity of information cannot be exploited at its best to reconstruct potential PTR networks, as it still lies scattered throughout several databases and in isolated reports of single interactions. To address this issue, we developed the second and vastly enhanced version of the Atlas of UTR Regulatory Activity (AURA 2), a meta-database centered on mapping interaction of trans-factors with human and mouse UTRs. AURA 2 includes experimentally demonstrated binding sites for RBPs, ncRNAs, thousands of cis-elements, variations, RNA epigenetics data and more. Its user-friendly interface offers various data-mining features including co-regulation search, network generation and regulatory enrichment testing. Gene expression profiles for many tissues and cell lines can be also combined with these analyses to display only the interactions possible in the system under study. AURA 2 aims at becoming a valuable toolbox for PTR studies and at tracing the road for how PTR network-building tools should be designed. AURA 2 is available at http://aura.science.unitn.it.

17.
J Neurochem ; 109(6): 1680-90, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19457136

RESUMEN

Ciliary neurotrophic factor (CNTF) is a multifunctional cytokine that can regulate the survival and differentiation of many types of developing and adult neurons. CNTF prevents the degeneration of motor neurons after axotomy and in mouse mutant progressive motor neuronopathy, which has encouraged trials of CNTF for human motor neuron disease. Given systemically, however, CNTF causes severe side effects, including cachexia and a marked immune response, which has limited its clinical application. The present work describes a novel approach for administering recombinant human CNTF (rhCNTF) while conserving neurotrophic activity and avoiding deleterious side effects. rhCNTF was fused to a protein transduction domain derived from the human immunodeficiency virus-1 TAT (transactivator) protein. The resulting fusion protein (TAT-CNTF) crosses the plasma membrane within minutes and displays a nuclear localization. TAT-CNTF was equipotent to rhCNTF in supporting the survival of cultured chicken embryo dorsal root ganglion neurons. Local or subcutaneous administration of TAT-CNTF, like rhCNTF rescued motor neurons from death in neonatal rats subjected to sciatic nerve transection. In contrast to subcutaneous rhCNTF, which caused a 20-30% decrease in body weight in neonatal rats between postnatal days 2 and 7 together with a considerable fat mobilization in brown adipose tissue, TAT-CNTF lacked such side effects. Together, these results indicate that rhCNTF fused with the protein transduction domain/TAT retains neurotrophic activity in the absence of CNTFs cytokine-like side effects and may be a promising candidate for the treatment of motor neuron and other neurodegenerative diseases.


Asunto(s)
Factor Neurotrófico Ciliar/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neuropatía Ciática/tratamiento farmacológico , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Animales Recién Nacidos , Axotomía/métodos , Peso Corporal/efectos de los fármacos , Recuento de Células/métodos , Células Cultivadas , Embrión de Pollo , Factor Neurotrófico Ciliar/metabolismo , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Neuropatía Ciática/etiología , Neuropatía Ciática/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Transducción Genética/métodos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/uso terapéutico
18.
Neurobiol Dis ; 30(1): 8-18, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18313315

RESUMEN

Two missense mutations (A30P and A53T) in the gene for alpha-synuclein (alpha-syn) cause familial Parkinson's disease (PD) in a small cohort. There is increasing evidence to propose that abnormal metabolism and accumulation of alpha-syn in dopaminergic neurons play a role in the development of familial as well as sporadic PD. The complexity of the mechanisms underlying alpha-syn-induced neurotoxicity, however, has made difficult the development of animal models that faithfully reproduce human PD pathology. We now describe and characterize such a model, which is based on the stereotaxic injection into rat right substantia nigra pars compacta of the A30P mutated form of alpha-syn fused to a protein transduction domain (TAT). The TAT sequence allows diffusion of the fusion protein across the neuronal plasma membrane and results in a localized dopaminergic loss. Dopaminergic cell loss was evaluated both by tyrosine hydroxylase immunohistochemistry and by HPLC analysis of dopamine and its catabolite 3,4 dihydroxyphenylacetic acid. Infusion of TAT-alpha-synA30P induced a significant 26% loss in dopaminergic neurons. This dopaminergic loss was accompanied by a time-dependent impairment in motor function, evaluated utilizing the rotarod and footprint tests. In comparison to chemical neurotoxin-based (e.g. 6-hyroxydopamine, MPTP) animal models of PD, the alpha-syn-based PD animal model offers the advantage of mimicking the early stages and slow development of the human disease and should prove valuable in assessing specific aspects of PD pathogenesis in vivo and in developing new therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Adrenérgicos/toxicidad , Análisis de Varianza , Animales , Apomorfina/administración & dosificación , Conducta Animal/efectos de los fármacos , Agonistas de Dopamina/administración & dosificación , Regulación de la Expresión Génica , Productos del Gen tat/química , Productos del Gen tat/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
19.
Exp Cell Res ; 314(3): 603-15, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18022619

RESUMEN

It has recently been shown that adipose tissue is an abundant and easily accessible source of stromal progenitor cells (ADSCs, adipose-derived stromal cells), resembling the mesenchymal stem cells (MSCs) obtained from adult bone marrow. However, the identification of these two lineages is still controversial and even the stem cell nature of ADSCs is doubted. In this study, we examined the "stemness" transcriptional profile of ADSCs and BM-MSCs, with two aims: (1) to compare their "stem cell molecular signature" and (2) to dissect their constitutive expression pattern for molecules involved in tissue development, homeostasis and repair. As well as several molecules involved in matrix remodeling and adult tissue angiogenesis and repair, we detected the expression of genes UTF-1, Nodal, and Snail2, which are known to be expressed by embryonic stem cells but have been never described in other stem lineages. In addition, for the first time we described the transcriptional profile of human BM-MSCs and ADSCs for the CD44 splice variants, which are determinant in cell trafficking during embryonic development, in adult tissue homeostasis and also in tumor dissemination. Thus, our findings strongly support a close relationship between ADSCs and BM-MSCs, suggest an unexpected similarity between MSCs and embryonic stem cells, and possibly support the potential therapeutic application of ADSCs.


Asunto(s)
Tejido Adiposo/metabolismo , Células de la Médula Ósea/metabolismo , Linaje de la Célula/genética , Expresión Génica/genética , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo/citología , Empalme Alternativo/genética , Células de la Médula Ósea/citología , Moléculas de Adhesión Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Citocinas/genética , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/genética , Proteína Nodal , Proteínas Nucleares/genética , Regeneración/genética , Factores de Transcripción de la Familia Snail , Células del Estroma/citología , Transactivadores/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética
20.
Neurosci Lett ; 421(2): 110-4, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17566657

RESUMEN

Neuroglobin (Ngb) is a heme protein that is primarily localised in the retina and the brain. Its physiological role is largely unknown. It has been reported that its overexpression protects neurons from hypoxia in vitro and in vivo, suggesting that the rapid modulation of the Ngb level in the nerve cells may be a promising stroke treatment strategy. In this study, we used a novel approach to overexpress Ngb and evaluate its ability to promote neuronal survival under hypoxic conditions. We constructed a human recombinant Ngb fused to the cell penetrating peptide (CPP) derived from HIV-1 TAT. Purified recombinant TAT-Ngb was able to efficiently transduce CHO and SHSY5Y cells, when added to the culture media. The potential neuroprotective action of Ngb was then examined by using an in vitro model of ischemia. The two neuronal cell lines RGC-5 and SH-SY5Y were subjected to oxygen glucose deprivation (OGD) after pre-treatment with TAT-Ngb. In both cell types, however, the treatment with the TAT-Ngb fusion protein did not show any effect on cell viability. This discrepancy to earlier reports might be due to the experimental model for oxygen glucose deprivation we employed. Alternatively, intracellular delivery of Ngb by the TAT/CPP might not have beneficial effects in the treatment of ischemic pathology.


Asunto(s)
Productos del Gen tat/fisiología , Globinas/uso terapéutico , Glucosa/deficiencia , Hipoxia/tratamiento farmacológico , Proteínas del Tejido Nervioso/uso terapéutico , Transducción Genética/métodos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , VIH-1/fisiología , Humanos , Neuroblastoma , Neuroglobina , Estructura Terciaria de Proteína/fisiología , Ratas , Proteínas Recombinantes de Fusión/uso terapéutico , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA