Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19479, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174793

RESUMEN

Genes of the Sprouty family (Spry1-4) are feedback inhibitors of receptor tyrosine kinases, especially of Ret and the FGF receptors. As such, they play distinct and overlapping roles in embryo morphogenesis and are considered to be tumor suppressors in adult life. Genetic experiments in mice have defined in great detail the role of these genes during embryonic development, however their function in adult mice is less clearly established. Here we generate adult-onset, whole body Spry1/2/4 triple knockout mice. Tumor incidence in triple mutant mice is comparable to that of wild type littermates of up to one year of age, indicating that Sprouty loss per se is not sufficient to initiate tumorigenesis. On the other hand, triple knockout mice do not gain weight as they age, show less visceral fat, and have lower plasma glucose levels than wild type littermates, despite showing similar food intake and slightly reduced motor function. They also show alopecia, eyelid inflammation, and mild hyperthyroidism. Finally, triple knockout mice present phosphaturia and hypophosphatemia, suggesting exacerbated signaling downstream of FGF23. In conclusion, triple knockout mice develop a series of endocrine abnormalities but do not show increased tumor incidence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factor-23 de Crecimiento de Fibroblastos , Proteínas de la Membrana , Ratones Noqueados , Fosfoproteínas , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Femenino , Masculino , Enfermedades del Sistema Endocrino/genética , Enfermedades del Sistema Endocrino/metabolismo , Proteínas del Tejido Nervioso , Proteínas Serina-Treonina Quinasas
2.
Cell Death Dis ; 15(4): 296, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670941

RESUMEN

Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.


Asunto(s)
Senescencia Celular , Fibroblastos , Proteínas de la Membrana , Animales , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Fibroblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas , Cicatrización de Heridas
3.
Biomed Pharmacother ; 168: 115817, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925934

RESUMEN

Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-ß-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-ß signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-ß-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-ß-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.


Asunto(s)
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias Endometriales , Metformina , Humanos , Femenino , Animales , Ratones , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor de Crecimiento Transformador beta/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Endometriales/patología , Proliferación Celular
4.
Adv Sci (Weinh) ; 10(32): e2303134, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37749866

RESUMEN

Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.


Asunto(s)
Carcinosarcoma , Neoplasias Endometriales , Neoplasias Uterinas , Humanos , Femenino , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Transición Epitelial-Mesenquimal , Sistemas CRISPR-Cas/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Carcinosarcoma/genética , Carcinosarcoma/patología
6.
Sci Rep ; 12(1): 14821, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050359

RESUMEN

The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-ß. It is well known that TGF-ß is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-ß remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-ß-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-ß-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-ß-induced apoptosis. On the other hand, we demonstrate that TGF-ß-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-ß to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-ß in normal versus tumoral cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Matriz Extracelular , Factor de Crecimiento Transformador beta , Apoptosis/efectos de los fármacos , Carcinogénesis/metabolismo , Endometrio/metabolismo , Células Epiteliales , Matriz Extracelular/metabolismo , Femenino , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...