Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 38(Suppl 1): i36-i44, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35758804

RESUMEN

MOTIVATION: Genome-wide association studies (GWAS), aiming to find genetic variants associated with a trait, have widely been used on bacteria to identify genetic determinants of drug resistance or hypervirulence. Recent bacterial GWAS methods usually rely on k-mers, whose presence in a genome can denote variants ranging from single-nucleotide polymorphisms to mobile genetic elements. This approach does not require a reference genome, making it easier to account for accessory genes. However, a same gene can exist in slightly different versions across different strains, leading to diluted effects. RESULTS: Here, we overcome this issue by testing covariates built from closed connected subgraphs (CCSs) of the de Bruijn graph defined over genomic k-mers. These covariates capture polymorphic genes as a single entity, improving k-mer-based GWAS both in terms of power and interpretability. However, a method naively testing all possible subgraphs would be powerless due to multiple testing corrections, and the mere exploration of these subgraphs would quickly become computationally intractable. The concept of testable hypothesis has successfully been used to address both problems in similar contexts. We leverage this concept to test all CCSs by proposing a novel enumeration scheme for these objects which fully exploits the pruning opportunity offered by testability, resulting in drastic improvements in computational efficiency. Our method integrates with existing visual tools to facilitate interpretation. AVAILABILITY AND IMPLEMENTATION: We provide an implementation of our method, as well as code to reproduce all results at https://github.com/HectorRDB/Caldera_ISMB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Programas Informáticos , Algoritmos , Bacterias/genética , Análisis de Secuencia de ADN/métodos
2.
Front Microbiol ; 12: 632567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690938

RESUMEN

Dietary fibers impact gut colonic health, through the production of short-chain fatty acids. A low-fiber diet has been linked to lower bacterial diversity, obesity, type 2 diabetes, and promotion of mucosal pathogens. Glycoside hydrolases (GHs) are important enzymes involved in the bacterial catabolism of fiber into short-chain fatty acids. However, the GH involved in glycan breakdown (adhesion, hydrolysis, and fermentation) are organized in polysaccharide utilization loci (PUL) with complex modularity. Our goal was to explore how the capacity of strains, from the Bacteroidetes phylum, to grow on fiber could be predicted from their genome sequences. We designed an in silico pipeline called FiberGrowth and independently validated it for seven different fibers, on 28 genomes from Bacteroidetes-type strains. To do so, we compared the existing GH annotation tools and built PUL models by using published growth and gene expression data. FiberGrowth's prediction performance in terms of true positive rate (TPR) and false positive rate (FPR) strongly depended on available data and fiber: arabinoxylan (TPR: 0.89 and FPR: 0), inulin (0.95 and 0.33), heparin (0.8 and 0.22) laminarin (0.38 and 0.17), levan (0.3 and 0.06), mucus (0.13 and 0.38), and starch (0.73 and 0.41). Being able to better predict fiber breakdown by bacterial strains would help to understand their impact on human nutrition and health. Assuming further gene expression experiment along with discoveries on structural analysis, we hope computational tools like FiberGrowth will help researchers prioritize and design in vitro experiments.

3.
Stem Cell Reports ; 16(4): 954-967, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33711267

RESUMEN

Metastasis is the major cause of cancer-related death, but whether metastatic lesions exhibit the same cellular composition as primary tumors has yet to be elucidated. To investigate the cellular heterogeneity of metastatic colorectal cancer (CRC), we established 72 patient-derived organoids (PDOs) from 21 patients. Combined bulk transcriptomic and single-cell RNA-sequencing analysis revealed decreased gene expression of markers for differentiated cells in PDOs derived from metastatic lesions. Paradoxically, expression of potential intestinal stem cell markers was also decreased. We identified OLFM4 as the gene most strongly correlating with a stem-like cell cluster, and found OLFM4+ cells to be capable of initiating organoid culture growth and differentiation capacity in primary PDOs. These cells were required for the efficient growth of primary PDOs but dispensable for metastatic PDOs. These observations demonstrate that metastatic lesions have a cellular composition distinct from that of primary tumors; patient-matched PDOs are a useful resource for analyzing metastatic CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Organoides/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Organoides/patología
4.
JMIR Form Res ; 5(3): e20175, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661120

RESUMEN

BACKGROUND: Novel wearable biosensors, ubiquitous smartphone ownership, and telemedicine are converging to enable new paradigms of clinical research. A new generation of continuous glucose monitoring (CGM) devices provides access to clinical-grade measurement of interstitial glucose levels. Adoption of these sensors has become widespread for the management of type 1 diabetes and is accelerating in type 2 diabetes. In parallel, individuals are adopting health-related smartphone-based apps to monitor and manage care. OBJECTIVE: We conducted a proof-of-concept study to investigate the potential of collecting robust, annotated, real-time clinical study measures of glucose levels without clinic visits. METHODS: Self-administered meal-tolerance tests were conducted to assess the impact of a proprietary synbiotic medical food on glucose control in a 6-week, double-blind, placebo-controlled, 2×2 cross-over pilot study (n=6). The primary endpoint was incremental glucose measured using Abbott Freestyle Libre CGM devices associated with a smartphone app that provided a visual diet log. RESULTS: All subjects completed the study and mastered CGM device usage. Over 40 days, 3000 data points on average per subject were collected across three sensors. No adverse events were recorded, and subjects reported general satisfaction with sensor management, the study product, and the smartphone app, with an average self-reported satisfaction score of 8.25/10. Despite a lack of sufficient power to achieve statistical significance, we demonstrated that we can detect meaningful changes in the postprandial glucose response in real-world settings, pointing to the merits of larger studies in the future. CONCLUSIONS: We have shown that CGM devices can provide a comprehensive picture of glucose control without clinic visits. CGM device usage in conjunction with our custom smartphone app can lower the participation burden for subjects while reducing study costs, and allows for robust integration of multiple valuable data types with glucose levels remotely. TRIAL REGISTRATION: ClinicalTrials.gov NCT04424888; http://clinicaltrials.gov/ct2/show/NCT04424888.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32675291

RESUMEN

INTRODUCTION: A growing body of evidence suggests that specific, naturally occurring gut bacteria are under-represented in the intestinal tracts of subjects with type 2 diabetes (T2D) and that their functions, like gut barrier stability and butyrate production, are important to glucose and insulin homeostasis. The objective of this study was to test the hypothesis that enteral exposure to microbes with these proposed functions can safely improve clinical measures of glycemic control and thereby play a role in the overall dietary management of diabetes. RESEARCH DESIGN AND METHODS: We evaluated whether a probiotic comprised of these anaerobic bacteria would enhance dietary management by (1) manufacturing two novel probiotic formulations containing three (WBF-010) or five (WBF-011) distinct strains in a Current Good Manufacturing Practice (cGMP) facility, (2) establishing consistent live-cell concentrations, (3) confirming safety at target concentrations dispensed in both animal and human studies and (4) conducting a 12-week parallel, double-blind, placebo-controlled, proof-of-concept study in which subjects previously diagnosed with T2D (n=76) were randomly assigned to a two times a day regimen of placebo, WBF-010 or WBF-011. RESULTS: No safety or tolerability issues were observed. Compared with the placebo group, subjects administered WBF-011 (which contains inulin, Akkermansia muciniphila, Clostridium beijerinckii, Clostridium butyricum, Bifidobacterium infantis and Anaerobutyricum hallii) significantly improved in the primary outcome, glucose total area under the curve (AUC): -36.1 mg/dL/180 min, p=0.0500 and also improved in secondary outcomes, glycated hemoglobin (A1c): -0.6, glucose incremental-AUC: -28.6 mg/dL/180 min. CONCLUSIONS: To our knowledge, this is the first randomized controlled trial to administer four of the five strains to human subjects with T2D. This proof-of-concept study (clinical trial number NCT03893422) shows that the intervention was safe and well tolerated and that supplementation with WBF-011 improves postprandial glucose control. The limited sample size and intersubject variability justifies future studies designed to confirm and expand on these observations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Probióticos , Glucemia , Clostridiales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Probióticos/uso terapéutico
6.
Nat Commun ; 10(1): 646, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718493

RESUMEN

The original PDF version of this Article contained errors in two equations. In Eq. (1), all Γ symbols were inadvertently omitted. In the second equation in the subsection entitled '1. Dispersion optimization' within the Methods section 'ZINB-WaVE estimation procedure', all Ψ symbols were inadvertently omitted. These errors have been corrected in the PDF version of the Article; the HTML version was correct from the time of publication.

7.
Genome Biol ; 19(1): 24, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29478411

RESUMEN

Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Programas Informáticos
8.
Nat Commun ; 9(1): 284, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348443

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) is a powerful high-throughput technique that enables researchers to measure genome-wide transcription levels at the resolution of single cells. Because of the low amount of RNA present in a single cell, some genes may fail to be detected even though they are expressed; these genes are usually referred to as dropouts. Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE), which leads to low-dimensional representations of the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simulated and real data, that the model and its associated estimation procedure are able to give a more stable and accurate low-dimensional representation of the data than principal component analysis (PCA) and zero-inflated factor analysis (ZIFA), without the need for a preliminary normalization step.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neuronas/metabolismo , ARN/genética , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Biología Computacional/estadística & datos numéricos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Masculino , Ratones , Neuronas/citología , Análisis de Componente Principal , ARN/metabolismo , Análisis de la Célula Individual/estadística & datos numéricos , Corteza Visual/citología , Corteza Visual/metabolismo
9.
F1000Res ; 6: 1158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28868140

RESUMEN

Novel single-cell transcriptome sequencing assays allow researchers to measure gene expression levels at the resolution of single cells and offer the unprecendented opportunity to investigate at the molecular level fundamental biological questions, such as stem cell differentiation or the discovery and characterization of rare cell types. However, such assays raise challenging statistical and computational questions and require the development of novel methodology and software. Using stem cell differentiation in the mouse olfactory epithelium as a case study, this integrated workflow provides a step-by-step tutorial to the methodology and associated software for the following four main tasks: (1) dimensionality reduction accounting for zero inflation and over dispersion and adjusting for gene and cell-level covariates; (2) cell clustering using resampling-based sequential ensemble clustering; (3) inference of cell lineages and pseudotimes; and (4) differential expression analysis along lineages.

10.
Mol Ecol ; 24(22): 5657-75, 2015 11.
Artículo en Inglés | MEDLINE | ID: mdl-26453896

RESUMEN

Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South-East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.


Asunto(s)
Incendios , Especiación Genética , Genética de Población , Genoma Fúngico , Neurospora/genética , Asia Sudoriental , ADN de Hongos/genética , Europa (Continente) , Flujo Génico , Modelos Genéticos , América del Norte , Filogenia , Polimorfismo de Nucleótido Simple , Aislamiento Reproductivo , Análisis de Secuencia de ADN
11.
Mol Biol Evol ; 32(9): 2417-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26025978

RESUMEN

Understanding the genetic and molecular bases of the ability to distinguish self from nonself (allorecognition) and mechanisms underlying evolution of allorecognition systems is an important endeavor for understanding cases where it becomes dysfunctional, such as in autoimmune disorders. In filamentous fungi, allorecognition can result in vegetative or heterokaryon incompatibility, which is a type of programmed cell death that occurs following fusion of genetically different cells. Allorecognition is genetically controlled by het loci, with coexpression of any combination of incompatible alleles triggering vegetative incompatibility. Herein, we identified, characterized, and inferred the evolutionary history of candidate het loci in the filamentous fungus Neurospora crassa. As characterized het loci encode proteins carrying an HET domain, we annotated HET domain genes in 25 isolates from a natural population along with the N. crassa reference genome using resequencing data. Because allorecognition systems can be affected by frequency-dependent selection favoring rare alleles (i.e., balancing selection), we mined resequencing data for HET domain loci whose alleles displayed elevated levels of variability, excess of intermediate frequency alleles, and deep gene genealogies. From these analyses, 34 HET domain loci were identified as likely to be under balancing selection. Using transformation, incompatibility assays and genetic analyses, we determined that one of these candidates functioned as a het locus (het-e). The het-e locus has three divergent allelic groups that showed signatures of positive selection, intra- and intergroup recombination, and trans-species polymorphism. Our findings represent a compelling case of balancing selection functioning on multiple alleles across multiple loci potentially involved in allorecognition.


Asunto(s)
Genes Fúngicos , Neurospora crassa/genética , Alelos , Secuencia de Aminoácidos , Apoptosis , Secuencia Conservada , ADN de Hongos , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Frecuencia de los Genes , Sitios Genéticos , Interacciones Microbianas , Datos de Secuencia Molecular , Neurospora crassa/citología , Filogenia , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...