Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 151, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351008

RESUMEN

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS: Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS: Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS: PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neuroblastoma , Lactante , Humanos , Animales , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Modelos Animales de Enfermedad , Citometría de Flujo
2.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37775116

RESUMEN

INTRODUCTION: B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS: B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS: All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION: Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neuroblastoma , Niño , Humanos , Ratones , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Duocarmicinas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos B7/metabolismo , Anticuerpos Monoclonales Humanizados
3.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36765519

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Patients with relapsed/refractory disease have a poor prognosis, and additional therapeutic options are needed. Mutations and amplifications in the ALK (Anaplastic Lymphoma Kinase) gene constitute a key target for treatment. Our goal, within the Italian project of PeRsonalizEdMEdicine (PREME), was to evaluate the genomic status of patients with relapsed/refractory NB and to implement targeted therapies in those with targetable mutations. From November 2018 to November 2021, we performed Whole Exome Sequencing or Targeted Gene Panel Sequencing in relapsed/refractory NB patients in order to identify druggable variants. Activating mutations of ALK were identified in 8(28.57%) of 28 relapsed/refractory NB patients. The mutation p.F1174L was found in six patients, whereas p.R1275Q was found in one and the unknown mutation p.S104R in another. Three patients died before treatment could be started, while five patients received crizotinib: two in monotherapy (one with p.F1174L and the other with p.S104R) and three (with p.F1174L variant) in combination with chemotherapy. All treated patients showed a clinical improvement, and one had complete remission after two cycles of combined treatment. The most common treatment-related toxicities were hematological. ALK inhibitors may play an important role in the treatment of ALK-mutated NB patients.

4.
EBioMedicine ; 85: 104300, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209521

RESUMEN

BACKGROUND: Neuroblastoma (NB) represents the most frequent form of extra-cranial solid tumour of infants, responsible for 15% of childhood cancer deaths. Nucleolin (NCL) prognostic value in NB was investigated. METHODS: NCL protein expression was retrospectively evaluated in tumour samples of NB patients at diagnosis and after chemotherapy. NCL prognostic value at mRNA level was assessed in a cohort of 20 patients with stage 4 NB (qPCR20, n=20, discovery dataset) and in the MultiPlatform786 including 786 patients of all stages (validation dataset). Overall and event-free survival curves were plotted by Kaplan-Meier method and compared by log-rank test. FINDINGS: NCL protein, down-modulated after chemotherapy in association with features of neuroblastic differentiation,resulted statistically significantly overexpressed in NB tumours and higher in stage 4 compared to stage 1,2,3 patients. In the stage 4 patients cohort qPCR20, patients with high NCLmRNA expression revealed a statisticallysignificant lower survival probability than those with low NCL expression (OS: HR 4.1 95%CI 1.2-13.8;p=0.0215[Log-rank test], EFS: HR 4.1 95%CI 1.2-14.0, p=0.0197[Log-rank test]). In the MultiPlatform786 (n=786), multivariate analysis suggested thatNCL expression has a statistically significant prognostic value even in the model adjusted for established prognostic markers. NCL expression significantly stratified also patients with >18 months and stage 4 tumour (OS: HR 1.8 95%CI 1.2-2.7, p=0.0009[Log-rank test]; EFS: HR 1.7 95%CI 1.1-2.5, p=0.002[Log-rank test]), patients with>18 months stage 4 with MYCN non amplified tumour[EFS: HR 2.3 95%CI 1.2-4.7, p=0.01[Log-rank test]), and patients with MYCN non amplified and MYC high [OS: HR 11.9 95%CI 2.3-62.4, p=0.003[Log-rank test]; EFS: HR 7.2 95%CI 1.6-33.4, p=0.01[Log-rank test]). A statistically significant correlation between NCL and MYCN, MYC, and TERT was found in independent datasets (MultiPlatform786 (n=786) and Agilent394 (n=394). Gene set enrichment analysis revealed a statisticallysignificant positive enrichment of MYC target genes and genes involved in telomerase maintenance. INTERPRETATION: NCL is a novel and independent (adjusting for age, INSS stage, and MYCN status) prognostic marker for NB. FUNDING: IMH-EuroNanoMed II-2015 and AIRC-IG.


Asunto(s)
Neuroblastoma , Lactante , Humanos , Pronóstico , Proteína Proto-Oncogénica N-Myc , Estudios Retrospectivos , Estadificación de Neoplasias , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patología , Nucleolina
5.
J Exp Clin Cancer Res ; 41(1): 92, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277192

RESUMEN

Neuroblastoma (NB) is a pediatric tumor that originates from neural crest-derived cells undergoing a defective differentiation due to genomic and epigenetic impairments. Therefore, NB may arise at any final site reached by migrating neural crest cells (NCCs) and their progeny, preferentially in the adrenal medulla or in the para-spinal ganglia.NB shows a remarkable genetic heterogeneity including several chromosome/gene alterations and deregulated expression of key oncogenes that drive tumor initiation and promote disease progression.NB substantially contributes to childhood cancer mortality, with a survival rate of only 40% for high-risk patients suffering chemo-resistant relapse. Hence, NB remains a challenge in pediatric oncology and the need of designing new therapies targeted to specific genetic/epigenetic alterations become imperative to improve the outcome of high-risk NB patients with refractory disease or chemo-resistant relapse.In this review, we give a broad overview of the latest advances that have unraveled the developmental origin of NB and its complex epigenetic landscape.Single-cell RNA sequencing with spatial transcriptomics and lineage tracing have identified the NCC progeny involved in normal development and in NB oncogenesis, revealing that adrenal NB cells transcriptionally resemble immature neuroblasts or their closest progenitors. The comparison of adrenal NB cells from patients classified into risk subgroups with normal sympatho-adrenal cells has highlighted that tumor phenotype severity correlates with neuroblast differentiation grade.Transcriptional profiling of NB tumors has identified two cell identities that represent divergent differentiation states, i.e. undifferentiated mesenchymal (MES) and committed adrenergic (ADRN), able to interconvert by epigenetic reprogramming and to confer intra-tumoral heterogeneity and high plasticity to NB.Chromatin immunoprecipitation sequencing has disclosed the existence of two super-enhancers and their associated transcription factor networks underlying MES and ADRN identities and controlling NB gene expression programs.The discovery of NB-specific regulatory circuitries driving oncogenic transformation and maintaining the malignant state opens new perspectives on the design of innovative therapies targeted to the genetic and epigenetic determinants of NB. Remodeling the disrupted regulatory networks from a dysregulated expression, which blocks differentiation and enhances proliferation, toward a controlled expression that prompts the most differentiated state may represent a promising therapeutic strategy for NB.


Asunto(s)
Neuroblastoma/embriología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones , Neuroblastoma/patología
6.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35337095

RESUMEN

Despite improvements in therapies and screening strategies, lung cancer prognosis still remains dismal, especially for metastatic tumors. Cancer stem cells (CSCs) are endowed with properties such as chemoresistance, dissemination, and stem-like features, that make them one of the main causes of the poor survival rate of lung cancer patients. MicroRNAs (miRNAs), small molecules regulating gene expression, have a role in lung cancer development and progression. In particular, miR-486-5p is an onco-suppressor miRNA found to be down-modulated in the tumor tissue of lung cancer patients. In this study, we investigate the role of this miRNA in CD133+ lung CSCs and evaluate the therapeutic efficacy of coated cationic lipid-nanoparticles entrapping the miR-486-5p miRNA mimic (CCL-486) using lung cancer patient-derived xenograft (PDX) models. In vitro, miR-486-5p overexpression impaired the PI3K/Akt pathway and decreased lung cancer cell viability. Moreover, miR-486-5p overexpression induced apoptosis also in CD133+ CSCs, thus affecting the in vivo tumor-initiating properties of these cells. Finally, we demonstrated that in vivo CCL-486 treatment decreased CD133+ percentage and inhibited tumor growth in PDX models. In conclusion, we provided insights on the efficacy of a novel miRNA-based compound to hit CD133+ lung CSCs, setting the basis for new combined therapeutic strategies.

7.
Cancers (Basel) ; 13(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771690

RESUMEN

Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.

8.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34577553

RESUMEN

Retinoids are a class of natural and synthetic compounds derived from vitamin A. They are involved in several biological processes like embryogenesis, reproduction, vision, growth, inflammation, differentiation, proliferation, and apoptosis. In light of their important functions, retinoids have been widely investigated for their therapeutic applications. Thus far, their use for the treatment of several types of cancer and skin disorders has been reported. However, these therapeutic agents present several limitations for their widespread clinical translatability, i.e., poor solubility and chemical instability in water, sensitivity to light, heat, and oxygen, and low bioavailability. These characteristics result in internalization into target cells and tissues only at low concentration and, consequently, at an unsatisfactory therapeutic dose. Furthermore, the administration of retinoids causes severe side-effects. Thus, in order to improve their pharmacological properties and circulating half-life, while minimizing their off-target uptake, various retinoids delivery systems have been recently developed. This review intends to provide examples of retinoids-loaded nano-delivery systems for cancer treatment. In particular, the use and the therapeutic results obtained by using fenretinide-loaded liposomes against neuroectodermal-derived tumors, such as melanoma, in adults, and neuroblastoma, the most common extra-cranial solid tumor of childhood, will be discussed.

9.
Nutrients ; 13(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202787

RESUMEN

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Olea , Extractos Vegetales/farmacología , Hojas de la Planta/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos
10.
Mol Oncol ; 15(11): 2969-2988, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34107168

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. Late diagnosis and metastatic dissemination contribute to its low survival rate. Since microRNA (miRNA) deregulation triggers lung carcinogenesis, miRNAs might represent an interesting therapeutic tool for lung cancer management. We identified seven miRNAs, including miR-126-3p and miR-221-3p, that are deregulated in tumours compared with normal tissues in a series of 38 non-small-cell lung cancer patients. A negative correlation between these two miRNAs was associated with poor patient survival. Concomitant miR-126-3p replacement and miR-221-3p inhibition, but not modulation of either miRNA alone, reduced lung cancer cell viability by inhibiting AKT signalling. PIK3R2 and PTEN were validated as direct targets of miR-126-3p and miR-221-3p, respectively. Simultaneous miRNA modulation reduced metastatic dissemination of lung cancer cells both in vitro and in vivo through CXCR4 inhibition. Systemic delivery of a combination of miR-126-3p mimic and miR-221-3p inhibitor encapsulated in lipid nanoparticles reduced lung cancer patient-derived xenograft growth through blockade of the PIK3R2-AKT pathway. Our findings reveal that cotargeting miR-126-3p and miR-221-3p to hamper both tumour growth and metastasis could be a new therapeutic approach for lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Liposomas , Neoplasias Pulmonares/patología , MicroARNs/genética , Nanopartículas , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
11.
J Exp Clin Cancer Res ; 40(1): 180, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078433

RESUMEN

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS: NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS: NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS: Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Neuroblastoma/tratamiento farmacológico , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/genética , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Xenoinjertos , Humanos , Liposomas/química , Liposomas/farmacología , Ratones , Nanopartículas/química , Neuroblastoma/genética , Neuroblastoma/patología , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Nucleolina
12.
Cancers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069335

RESUMEN

The study of the interactions occurring in the BM environment has been facilitated by the peculiar nature of metastatic NB. In fact: (i) metastases are present at diagnosis; (ii) metastases are confined in a very specific tissue, the BM, suggestive of a strong attraction and possibility of survival; (iii) differently from adult cancers, NB metastases are available because the diagnostic procedures require morphological examination of BM; (iv) NB metastatic cells express surface antigens that allow enrichment of NB metastatic cells by immune-magnetic separation; and (v) patients with localized disease represent an internal control to discriminate specific alterations occurring in the metastatic niche from generic alterations determined by the neoplastic growth at the primary site. Here, we first review the information regarding the features of BM-infiltrating NB cells. Then, we focus on the alterations found in the BM of children with metastatic NB as compared to healthy children and children with localized NB. Specifically, information regarding all the BM cell populations and their sub-sets will be first examined in the context of BM microenvironment in metastatic NB. In the last part, the information regarding the soluble factors will be presented.

13.
J Pers Med ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562297

RESUMEN

Neuroblastoma (NB) accounts for about 8-10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.

14.
Pediatr Blood Cancer ; 68(5): e28904, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33459514

RESUMEN

PURPOSE: Stage 4S neuroblastoma, a tumor affecting infants, is characterized by the capacity to regress spontaneously and high cure rate. About a third of these infants undergo tumor progression requiring antitumor treatment and 10-15% eventually die. In case of metastatic progression, it may occur either at 4S sites (mainly liver) or sites characterizing stage 4 (mainly bone). Aim of this study was to estimate incidence, presenting features and outcome of infants who progressed to stage 4S or stage 4 sites. PATIENTS: Of 280 Italian infants diagnosed with stage 4S neuroblastoma between 1979 and 2013 and registered in the Italian Neuroblastoma Registry, 268 were evaluable for this study, of whom 57 developed metastatic progression. RESULTS: Progression to stage 4S sites occurred in 29/268 infants (10.8%) (Group A) and to stage 4 in 28/268 (10.4%) (Group B). No significant difference was observed between the two groups at the time of diagnosis. At the time of progression, Group A infants were younger (7.3 vs 14.4 months, P = .001) and had a shorter interval from diagnosis to progression (3.8 vs 9.6 months, P = .001). Survival after progression was worse for Group B infants (45% vs 69%, P = .058) and was associated with age at diagnosis lower than 2 months (P = .005) and adrenal primary tumor site (P = .008). Survival rates increased for both groups along the study period. CONCLUSIONS: Infants who progressed to stage 4 did worse, possibly in relation to older age at progression and longer interval between diagnosis and progression. Large prospective studies of these patients may lead to more effective treatments.


Asunto(s)
Neuroblastoma/patología , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Italia , Masculino , Metástasis de la Neoplasia/patología , Estadificación de Neoplasias , Neuroblastoma/mortalidad , Sistema de Registros
15.
Cancers (Basel) ; 12(6)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512881

RESUMEN

Uveal melanoma (UM) is a rare tumor of the eye that leads to deadly metastases in about half of the patients. ADAM10 correlates with c-Met expression in UM and high levels of both molecules are related to the development of metastases. MiR122 and miR144 modulate ADAM10 and c-Met expression in different settings. We hypothesized a potential onco-suppressive role for miR122 and miR144 through modulation of ADAM10 and c-Met in UM. We analyzed the UM Cancer Genome Atlas data portal (TCGA) dataset, two other cohorts of primary tumors and five human UM cell lines for miR122 and miR144 expression by miR microarray, RT-qPCR, Western blotting, miR transfection and luciferase reporter assay. Our results indicate that miR122 and miR144 are expressed at low levels in the UM cell lines and in the TCGA UM dataset and were down-modulated in a cohort of seven UM samples, compared to normal choroid. Both miR122 and miR144 directly targeted ADAM10 and c-Met. Overexpression of miR122 and miR144 led to reduced expression of ADAM10 and c-Met in the UM cell lines and impaired cell proliferation, migration, cell cycle and shedding of c-Met ecto-domain. Our results show that miR122 and miR144 display an onco-suppressive role in UM through ADAM10 and c-Met modulation.

16.
Small ; 16(20): e1906426, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323486

RESUMEN

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.


Asunto(s)
MicroARNs , Nanopartículas , Neuroblastoma , Animales , Línea Celular Tumoral , Proliferación Celular , Niño , Humanos , Ratones , MicroARNs/genética , Recurrencia Local de Neoplasia , Proteínas de Unión al ARN
17.
J Control Release ; 308: 44-56, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31299263

RESUMEN

Lung cancer is the leading cause of cancer-related deaths. Late diagnosis and inadequate therapies contribute to poor outcomes. MicroRNAs (miRNAs) are small non-coding RNAs and are involved in lung cancer development. Because miRNAs simultaneously regulate several cancer-related genes, they represent an interesting therapeutic approach for cancer treatment. We have developed Coated Cationic Lipid-nanoparticles entrapping miR-660 (CCL660) and intraperitoneally administered (1.5 mg/Kg) twice a week for four weeks into SCID mice carrying subcutaneously lung cancer Patients Derived Xenografts (PDXs). Obtained data demonstrated that miR-660 is down-regulated in lung cancer patients and that its replacement inhibited lung cancer growth by inhibiting the MDM2-P53 axis. Furthermore, systemic delivery of CCL660 increased miRNA levels in tumors and significantly reduced tumor growth in two different P53 wild-type PDXs without off-target effects. MiR-660 administration reduced cancer cells proliferation by inhibiting MDM2 and restoring P53 function and its downstream effectors such as p21. Interestingly, anti-tumoral effects of CCL660 also in P53 mutant PDXs but with a functional p21 pathway were observed. Stable miR-660 expression inhibited the capacity of H460 metastatic lung cancer cells to form lung nodules when injected intravenously into SCID mice suggesting a potential role of miR-660 in metastatic dissemination. To investigate the potential toxic effects of both miRNAs and delivery agents, an in vitro approach revealed that miR-660 replacement did not induce any changes in both mouse and human normal cells. Interestingly, lipid-nanoparticle delivery of synthetic miR-660 had no immunological off-target or acute/chronic toxic effects on immunocompetent mice. Altogether, our results highlight the potential role of coated cationic lipid-nanoparticles entrapping miR-660 in lung cancer treatment without inducing immune-related toxic effects.


Asunto(s)
Lípidos/química , Neoplasias Pulmonares/terapia , MicroARNs/genética , Nanopartículas , Animales , Cationes , Proliferación Celular/genética , Regulación hacia Abajo , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Small ; 15(10): e1804591, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30706636

RESUMEN

Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.


Asunto(s)
Liposomas/química , Neuroblastoma/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Bortezomib/química , Bortezomib/uso terapéutico , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Fenretinida/química , Fenretinida/uso terapéutico , Humanos
19.
Small ; 14(45): e1802886, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30294852

RESUMEN

Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Nanopartículas/química , Neuroblastoma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neuroblastoma/metabolismo , Neuropilina-1/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973487

RESUMEN

Macrophages, cells belonging to the innate immune system, present a high plasticity grade, being able to change their phenotype in response to environmental stimuli. They play central roles during development, homeostatic tissue processes, tissue repair, and immunity. Furthermore, it is recognized that macrophages are involved in chronic inflammation and that they play central roles in inflammatory diseases and cancer. Due to their large involvement in the pathogenesis of several types of human diseases, macrophages are considered to be relevant therapeutic targets. Nanotechnology-based systems have attracted a lot of attention in this field, gaining a pivotal role as useful moieties to target macrophages in diseased tissues. Among the different approaches that can target macrophages, the most radical is represented by their depletion, commonly obtained by means of clodronate-containing liposomal formulations and/or depleting antibodies. These strategies have produced encouraging results in experimental mouse models. In this review, we focus on macrophage targeting, based on the results so far obtained in preclinical models of inflammatory diseases and cancer. Pros and cons of these therapeutic interventions will be highlighted.


Asunto(s)
Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Ácido Clodrónico/uso terapéutico , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Humanos , Inflamación/inmunología , Liposomas , Macrófagos/inmunología , Ratones , Nanotecnología , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...