Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Diabetes Sci Technol ; : 19322968241260037, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887019

RESUMEN

BACKGROUND: Diabetic foot ulceration is a serious challenge worldwide which imposes an immense risk of lower extremity amputation and in many cases may lead to the death. The presented work focuses on the offloading requirements using an active approach and considers the use of magnetorheological fluid-based modules to redistribute high plantar pressures (PPs). METHODS & RESULTS: Experimentation validated a single module with a threshold peak pressure of 450 kPa, whereas an offloading test with a three-module array and complete footwear validated a maximum pressure reduction of 42.5% and 34.6%, respectively. CONCLUSION: To our knowledge, no such active and electrically controllable offloading footwear has been reported yet that has experimentally demonstrated PP reduction of more than 30% over the offloading site.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38514398

RESUMEN

OBJECTIVES: Fontan failure refers to a condition in which the Fontan circulation, a surgical procedure used to treat certain congenital heart defects, becomes insufficient, leading to compromised cardiac function and potential complications. This in vitro study therefore investigates the feasibility of bladeless impedance-driven cavopulmonary assist device via dielectric elastomer actuator (DEA) as a means to address Fontan failure. METHODS: A cavopulmonary assist device, constructed using DEA technologies and employing the impedance pump concept, is subjected to in vitro testing within a closed-loop setup. This study aims to assess the device's functionality and performance under controlled conditions, providing valuable insights into its potential application as a cavopulmonary assistive technology. RESULTS: The DEA-based pump, measuring 50 mm in length and 30 mm in diameter, is capable of achieving substantial flow rates within a closed-loop setup, reaching up to 1.20 l/min at an activation frequency of 4 Hz. It also provides a broad range of working internal pressures (<10 to >20 mmHg). Lastly, the properties of the flow (direction, magnitude, etc.) can be controlled by adjusting the input signal parameters (frequency, amplitude, etc.). CONCLUSIONS: In summary, the results suggest that the valveless impedance-driven pump utilizing DEA technology is promising in the context of cavopulmonary assist devices. Further research and development in this area may lead to innovative and potentially more effective solutions for assisting the right heart, ultimately benefiting patients with heart-related health issues overall, with a particular focus on those experiencing Fontan failure.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38419585

RESUMEN

OBJECTIVES: We propose an evolution of a dielectric elastomer actuator-based cardiac assist device that acts as a counterpulsation system. We introduce a new pre-stretched actuator and implant the device in a graft bypass between the ascending and descending aorta to redirect all blood through the device (ascending aorta clamped). The objective was to evaluate the influence of these changes on the assistance provided to the heart. METHODS: The novel para-aortic device and the new implantation technique were tested in vivo in 5 pigs. We monitored the pressure and flow in the aorta as well as the pressure-volume characteristics of the left ventricle. Different activation timings were tested to identify the optimal device actuation. RESULTS: The proposed device helps reducing the end-diastolic pressure in the aorta by up to 13 ± 4.0% as well as the peak systolic pressure by up to 16 ± 3.6%. The early diastolic pressure was also increased up to 10 ± 3.5%. With different activation, we also showed that the device could increase or decrease the stroke volume. CONCLUSIONS: The new setup and the novel para-aortic device presented here helped improve cardiac assistance compared to previous studies. Moreover, we revealed a new way to assist the heart by actuating the device at different starting time to modify the left ventricular stroke volume and stroke work.

4.
Soft Robot ; 11(2): 198-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37729065

RESUMEN

Impedance pumps are simple designs that allow the generation or amplification of flow. They are fluid-filled systems based on flexible tubing connected to tubing with different impedances. A periodic off-center compression of the flexible tubing causes the fluid to move and generate flow. Wave reflection at the impedance mismatch is the primary driving mechanism of the flow. In addition to their straightforward design, impedance pumps are bladeless, valveless, and pulsatile. These properties are highly sought after by demanding and challenging applications, such as the biomedical field, as they present less risk of damage, disruption, and obstruction when handling viscous and delicate fluids/matter. In this study, we propose a high-performance impedance-driven pumping concept with embedded actuation based on a multilayered tubular dielectric elastomer. This pumping system is made of three parts, a dielectric elastomer actuator tube, a passive tube, and a rigid ring that binds and decouples the two subsystems. The system is able to generate net fluid flow rates up to 1.35 L/min with an internal pressure of 125 mmHg. The soft simplistic design, self-contained concept, and high performances of these pumping systems could make them disruptive in many challenging meso- and macroscale applications in general and in the biomedical field in particular.

5.
J Biomech ; 159: 111777, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666100

RESUMEN

Dielectric elastomer actuator augmented aorta (DEA) represents a novel approach with high potential for assisting a failing heart. The soft tubular device replaces a section of the aorta and increases its diameter when activated. The hemodynamic interaction between the DEA and the left ventricle (LV) has not been investigated with wave intensity (WI) analysis before. The objective of this study is to investigate the hemodynamic effects of the DEA on the aortic WI pattern. WI was calculated from aortic pressure and flow measured in-vivo in the descending aorta of two pigs implanted with DEAs. The DEAs were tested for different actuation phase shifts (PS). The DEA generated two decompression waves (traveling upstream and downstream of the device) at activation followed by two compression waves at deactivation. Depending on the PS, the end-diastolic pressure (EDP) decreased by 7% (or increased by 5-6%). The average early diastolic pressure augmentation (Pdia¯) increased by 2% (or decreased by 2-3%). The hydraulic work (WH) measured in the aorta decreased by 2% (or increased by 5%). The DEA-generated waves interfered with the LV-generated waves, and the timing of the waves affected the hemodynamic effect of the device. For the best actuation timing the upstream decompression wave arrived just before aortic valve opening and the upstream compression wave arrived just before aortic valve closure leading to a decreased EDP, an increased Pdia¯ and a reduced.WH.


Asunto(s)
Aorta , Hemodinámica , Porcinos , Animales , Aorta/fisiología , Presión Sanguínea , Corazón , Presión Arterial
6.
Front Endocrinol (Lausanne) ; 14: 1166513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469988

RESUMEN

The high prevalence of lower extremity ulceration and amputation in people with diabetes is strongly linked to difficulties in achieving and maintaining a reduction of high plantar pressures (PPs) which remains an important risk factor. The effectiveness of current offloading footwear is opposed in part by poor patient adherence to these interventions which have an impact on everyday living activities of patients. Moreover, the offloading devices currently available utilize primarily passive techniques, whereas PP distribution is a dynamically changing process with frequent shifts of high PP areas under different areas of the foot. Thus, there is a need for pressure offloading footwear capable of regularly and autonomously adapting to PPs of people with diabetes. The aim of this article is to summarize the concepts of intelligent pressure offloading footwear under development which will regulate PPs in people with diabetes to prevent and treat diabetic foot ulcers. Our team is creating this intelligent footwear with an auto-contouring insole which will continuously read PPs and adapt its shape in the forefoot and heel regions to redistribute high PP areas. The PP-redistribution process is to be performed consistently while the footwear is being worn. To improve adherence, the footwear is designed to resemble a conventional shoe worn by patients in everyday life. Preliminary pressure offloading and user perceptions assessments in people without and with diabetes, respectively, exhibit encouraging results for the future directions of the footwear. Overall, this intelligent footwear is designed to prevent and treat diabetic foot ulcers while enhancing patient usability for the ultimate prevention of lower limb amputations.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Presión , Pie , Amputación Quirúrgica , Factores de Riesgo
7.
Bioeng Transl Med ; 8(2): e10396, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925677

RESUMEN

Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%.

8.
Soft Matter ; 17(48): 10786-10805, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34859250

RESUMEN

Electroactive polymers based on dielectric elastomers are stretchable and compressible capacitors that can act as transducers between electrical and mechanical energies. Depending on the targeted application, soft actuators, sensors or mechanical-energy harvesters can be developed. Compared with conventional technologies, they present a promising combination of properties such as being soft, silent, light and miniaturizable. Most of the research on dielectric elastomer actuators has focused on obtaining the highest strain, either from technological solutions using commercially available materials or through the development of new materials. It is commonly accepted that a high electrical breakdown field, a low Young's modulus and a high dielectric constant are targets. However, the interdependency of these properties makes the evaluation and comparison of these materials complex. In addition, dielectric elastomers can suffer from electromechanical instability, which amplifies their complexity. The scope of this review is to tackle these difficulties. Thus, first, two physical parameters are introduced, one related to the energy converted by the dielectric elastomer and another to its electromechanical stability. These numbers are then used to compare dielectric elastomers according to a general and rational methodology considering their physicochemical and electromechanical properties. Based on this methodology, different families of commercially available dielectric elastomers are first analyzed. Then, different polymer modification methods are presented, and the resulting modified elastomers are screened. Finally, we conclude on the trends enabling the choice of the most suitable modification procedure to obtain the desired elastomer. From this review work, we would like to contribute to affording a quick identification method, including a graphic representation, to evaluate and develop the dielectric materials that are suitable for a desired actuator.

9.
Adv Sci (Weinh) ; 8(6): 2001974, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747718

RESUMEN

Although heart transplantation is a gold standard for severe heart failure, there is a need for alternative effective therapies. A dielectric-elastomer aorta is used to augment the physiological role of the aorta in the human circulatory system. To this end, the authors developed a tubular dielectric elastomer actuator (DEA) able to assist the heart by easing the deformation of the aorta in the systole and by increasing its recoil force in the diastole. In vitro experiments using a pulsatile flow-loop, replicating human physiological flow and pressure conditions, show a reduction of 5.5% (47 mJ per cycle) of the heart energy with this device. Here, the controlled stiffness of the DEA graft, which is usually difficult to exploit for actuators, is perfectly matching the assistance principle. At the same time, the physiological aortic pressure is exploited to offer a prestretch to the DEA which otherwise would require an additional bulky pre-stretching system to reach high performances.

10.
Sci Robot ; 4(37)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137720

RESUMEN

Insects are a constant source of inspiration for roboticists. Their compliant bodies allow them to squeeze through small openings and be highly resilient to impacts. However, making subgram autonomous soft robots untethered and capable of responding intelligently to the environment is a long-standing challenge. One obstacle is the low power density of soft actuators, leading to small robots unable to carry their sense and control electronics and a power supply. Dielectric elastomer actuators (DEAs), a class of electrostatic electroactive polymers, allow for kilohertz operation with high power density but require typically several kilovolts to reach full strain. The mass of kilovolt supplies has limited DEA robot speed and performance. In this work, we report low-voltage stacked DEAs (LVSDEAs) with an operating voltage below 450 volts and used them to propel an insect-sized (40 millimeters long) soft untethered and autonomous legged robot. The DEAnsect body, with three LVSDEAs to drive its three legs, weighs 190 milligrams and can carry a 950-milligram payload (five times its body weight). The unloaded DEAnsect moves at 30 millimeters/second and is very robust by virtue of its compliance. The sub-500-volt operation voltage enabled us to develop 780-milligram drive electronics, including optical sensors, a microcontroller, and a battery, for two channels to output 450 volts with frequencies up to 1 kilohertz. By integrating this flexible printed circuit board with the DEAnsect, we developed a subgram robot capable of autonomous navigation, independently following printed paths. This work paves the way for new generations of resilient soft and fast untethered robots.

11.
Rev Med Suisse ; 12(502): 143-7, 2016 Jan 20.
Artículo en Francés | MEDLINE | ID: mdl-26946791

RESUMEN

The incidence of diabetic foot ulcerations and lower extremity amputations remains very high and inacceptable. The high risk of ulceration and consequent amputation is strongly related to difficulties to obtain foot off-loading, particularly on long term. Due to the complexity of their utilization, the available foot off-loading devices are underused both by health care providers and patients with very low therapeutic adherence. This article summarizes the foot off-loading in diabetic patients and describes the concept of intelligent footwear we developed, based on continuous measurements and permanent and automatic adaptations of the shoe insole's rigidity.


Asunto(s)
Pie Diabético/prevención & control , Diseño de Equipo , Zapatos , Humanos
12.
IEEE Trans Biomed Eng ; 58(2): 420-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20959263

RESUMEN

A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.


Asunto(s)
Implantes Cocleares , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Modelos Teóricos
13.
Artículo en Inglés | MEDLINE | ID: mdl-18407855

RESUMEN

This paper presents the design, the properties, and the optimization study of a new type of ultrasonic linear motor. Numerical modeling has been carried out and simulations with software have been realized. To avoid performing a large number of simulations, sensitivity analysis has been carried out, in particular using design of experiments. The Doehlert method has been chosen in our study. The results found show that this preoptimization stage allows one to improve the deformation amplitude and to reduce the input parameter variation ranges. Finite element (FE) optimization is then carried out, and results show that the motion amplitudes can be increased compared to the initial design of the motor. Some experiments on prototypes show that the travel range of the motor has been increased while decreasing the applied voltage by a factor of 2.

14.
Artículo en Inglés | MEDLINE | ID: mdl-16889343

RESUMEN

This paper presents the sensitivity analysis of an ultrasonic linear motor using design of experiments (DOE) and the finite element (FE) optimization of its deformation amplitude. A first ultrasonic linear motor prototype has been built at the laboratory. A deformation amplitude of about 6.6 microm can be obtained by applying a 100 V voltage. The goal is to obtain a bigger deformation amplitude by varying the motor parameters, in particular the vibratory piece dimensions. First of all, a parametrization of the motor structure is carried out. Then, with the aim of reducing the variation ranges of the input parameters--but also to avoid performing a large number of simulations--a preoptimization stage is necessary. Thus, sensitivity analysis is carried out using design of experiments, which is a good way to obtain the influence of the input parameters on the objective function. Factorial designs have been chosen to find out the effects of each input factor but also the effect of their interactions. This method then is compared with Doehlert design technique, which is generally used for optimization approaches. The results show that it is absolutely necessary to take into account the quadratic terms in the model because they represent an important effect. The use of design of experiments revealed to be an interesting way to analyze numerically the ultrasonic motor as a preoptimization stage and already allows one to improve the deformation amplitude but also to reduce the input parameter variation ranges. Different FE optimization methods are then applied, and results show that the deformation amplitude can be increased by a factor higher than 10 compared to the initial design.

15.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 3162-5, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17946160

RESUMEN

A new hearing therapy called direct acoustical cochlear stimulation (DACS) was developed and validated in a first clinical trial with four patients. The key component of this therapy based on an implantable hearing device is a micro-actuator that is implanted in the mastoid right behind the external auditory canal of a patient. It generates vibrations that are directly coupled to the inner ear fluids and bypass therefore the outer and the middle ear. This allows treating severe to profound mixed hearing loss. The actuator transfer function has to be similar to the transfer function of a normal human middle ear to guarantee high system efficiency. A balanced armature actuator was the ideal transducer type in order to meet this requirement considering the given restrictions in size and shape.


Asunto(s)
Implantes Cocleares , Umbral Auditivo , Ingeniería Biomédica , Líquidos Corporales/fisiología , Oído Interno/cirugía , Electrónica Médica/instrumentación , Diseño de Equipo , Perdida Auditiva Conductiva-Sensorineural Mixta/fisiopatología , Perdida Auditiva Conductiva-Sensorineural Mixta/terapia , Humanos , Percepción del Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...