Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Neurobiol Dis ; : 106630, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39106928

RESUMEN

Despite growing descriptions of wild-type Huntingtin (wt-HTT) roles in both adult brain function and, more recently, development, several clinical trials are exploring HTT-lowering approaches that target both wt-HTT and the mutant isoform (mut-HTT) responsible for Huntington's disease (HD). This non-selective targeting is based on the autosomal dominant inheritance of HD, supporting the idea that mut-HTT exerts its harmful effects through a toxic gain-of-function or a dominant-negative mechanism. However, the precise amount of wt-HTT needed for healthy neurons in adults and during development remains unclear. In this study, we address this question by examining how wt-HTT loss affects human neuronal network formation, synaptic maturation, and homeostasis in vitro. Our findings establish a role of wt-HTT in the maturation of dendritic arborization and the acquisition of network-wide synchronized activity by human cortical neuronal networks modeled in vitro. Interestingly, the network synchronization defects only became apparent when more than two-thirds of the wt-HTT protein was depleted. Our study underscores the critical need to precisely understand wt-HTT role in neuronal health. It also emphasizes the potential risks of excessive wt-HTT loss associated with non-selective therapeutic approaches targeting both wt- and mut-HTT isoforms in HD patients.

2.
J Huntingtons Dis ; 13(1): 41-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427495

RESUMEN

Background: Mutations in the Huntingtin (HTT) gene cause Huntington's disease (HD), a neurodegenerative disorder. As a scaffold protein, HTT is involved in numerous cellular functions, but its normal and pathogenic functions during human forebrain development are poorly understood. Objective: To investigate the developmental component of HD, with a specific emphasis on understanding the functions of wild-type and mutant HTT alleles during forebrain neuron development in individuals carrying HD mutations. Methods: We used CRISPR/Cas9 gene-editing technology to disrupt the ATG region of the HTT gene via non-homologous end joining to produce mono- or biallelic HTT knock-out human induced pluripotent stem cell (iPSC) clones. Results: We showed that the loss of wild-type, mutant, or both HTT isoforms does not affect the pluripotency of iPSCs or their transition into neural cells. However, we observed that HTT loss causes division impairments in forebrain neuro-epithelial cells and alters maturation of striatal projection neurons (SPNs) particularly in the acquisition of DARPP32 expression, a key functional marker of SPNs. Finally, young post-mitotic neurons derived from HTT-/- human iPSCs display cellular dysfunctions observed in adult HD neurons. Conclusions: We described a novel collection of isogenic clones with mono- and biallelic HTT inactivation that complement existing HD-hiPSC isogenic series to explore HTT functions and test therapeutic strategies in particular HTT-lowering drugs. Characterizing neural and neuronal derivatives from human iPSCs of this collection, we show evidence that HTT loss or mutation has impacts on neuro-epithelial and striatal neurons maturation, and on basal DNA damage and BDNF axonal transport in post-mitotic neurons.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Cuerpo Estriado/metabolismo , Alelos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Hum Gene Ther ; 34(17-18): 958-974, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37658843

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a toxic gain-of-function CAG expansion in the first exon of the huntingtin (HTT) gene. The monogenic nature of HD makes mutant HTT (mHTT) inactivation a promising therapeutic strategy. Single nucleotide polymorphisms frequently associated with CAG expansion have been explored to selectively inactivate mHTT allele using the CRISPR/Cas9 system. One of such allele-selective approaches consists of excising a region flanking the first exon of mHTT by inducing simultaneous double-strand breaks at upstream and downstream positions of the mHTT exon 1. The removal of the first exon of mHTT deletes the CAG expansion and important transcription regulatory sites, leading to mHTT inactivation. However, the frequency of deletion events is yet to be quantified either in vitro or in vivo. Here, we developed accurate quantitative digital polymerase chain reaction-based assays to assess HTT exon 1 deletion in vitro and in fully humanized HU97/18 mice. Our results demonstrate that dual-single guide RNA (sgRNA) strategies are efficient and that 67% of HTT editing events are leading to exon 1 deletion in HEK293T cells. In contrast, these sgRNA actively cleaved HTT in HU97/18 mice, but most editing events do not lead to exon 1 deletion (10% exon 1 deletion). We also showed that the in vivo editing pattern is not affected by CAG expansion but may potentially be due to the presence of multiple copies of wildtype (wt)/mHTT genes HU97/18 mice as well as the slow kinetics of AAV-mediated CRISPR/Cas9 delivery.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Enfermedad de Huntington , Humanos , Animales , Ratones , ARN Guía de Sistemas CRISPR-Cas , Células HEK293 , Exones/genética , Alelos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Sistema Nervioso Central
4.
Methods Mol Biol ; 2551: 357-378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310215

RESUMEN

Aggregated alpha-synuclein (α-Syn) in neurons is a hallmark of Parkinson's disease (PD) and other synucleinopathies. Recent advances (1) in the production and purification of synthetic assemblies of α-Syn, (2) in the design and production of microfluidic devices allowing the construction of oriented and compartmentalized neuronal network on a chip, and (3) in the differentiation of human pluripotent stem cells (hPSCs) into specific neuronal subtypes now allow the study of cellular and molecular determinants of the prion-like properties of α-Syn in vitro. Here, we described the methods we used to reconstruct a cortico-cortical human neuronal network in microfluidic devices and how to take advantage of this cellular model to characterize (1) the prion-like properties of different α-Syn strains and (2) the neuronal dysfunctions and the alterations associated with the exposure to α-Syn strains or the nucleation of endogenous α-Syn protein in vitro.


Asunto(s)
Enfermedad de Parkinson , Priones , Sinucleinopatías , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Priones/metabolismo
5.
Brain ; 145(5): 1584-1597, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262656

RESUMEN

There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Encéfalo/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163606

RESUMEN

Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders "in a dish". Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/trasplante , Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Neuroglía/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/terapia
7.
Stem Cell Res Ther ; 12(1): 599, 2021 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865655

RESUMEN

BACKGROUND: The lack of physiologically relevant and predictive cell-based assays is one of the major obstacles for testing and developing botulinum neurotoxins (BoNTs) therapeutics. Human-induced pluripotent stem cells (hiPSCs)-derivatives now offer the opportunity to improve the relevance of cellular models and thus the translational value of preclinical data. METHODS: We investigated the potential of hiPSC-derived motor neurons (hMNs) optical stimulation combined with calcium imaging in cocultured muscle cells activity to investigate BoNT-sensitivity of an in vitro model of human muscle-nerve system. RESULTS: Functional muscle-nerve coculture system was developed using hMNs and human immortalized skeletal muscle cells. Our results demonstrated that hMNs can innervate myotubes and induce contractions and calcium transient in muscle cells, generating an in vitro human motor endplate showing dose-dependent sensitivity to BoNTs intoxication. The implementation of optogenetics combined with live calcium imaging allows to monitor the impact of BoNTs intoxication on synaptic transmission in human motor endplate model. CONCLUSIONS: Altogether, our findings demonstrate the promise of optogenetically hiPSC-derived controlled muscle-nerve system for pharmaceutical BoNTs testing and development.


Asunto(s)
Toxinas Botulínicas , Células Madre Pluripotentes Inducidas , Toxinas Botulínicas/farmacología , Humanos , Placa Motora , Neuronas Motoras
8.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299143

RESUMEN

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.


Asunto(s)
Bioensayo/métodos , Toxinas Botulínicas/farmacología , Neuronas/citología , Neurotoxinas/farmacología , Células Madre Pluripotentes/citología , Animales , Toxinas Botulínicas/clasificación , Humanos , Neuronas/efectos de los fármacos , Neurotoxinas/clasificación , Células Madre Pluripotentes/efectos de los fármacos
9.
Sci Adv ; 7(14)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33789888

RESUMEN

Huntington disease (HD) damages the corticostriatal circuitry in large part by impairing transport of brain-derived neurotrophic factor (BDNF). We hypothesized that improving vesicular transport of BDNF could slow or prevent disease progression. We therefore performed selective proteomic analysis of vesicles transported within corticostriatal projecting neurons followed by in silico screening and identified palmitoylation as a pathway that could restore defective huntingtin-dependent trafficking. Using a synchronized trafficking assay and an HD network-on-a-chip, we found that increasing brain palmitoylation via ML348, which inhibits the palmitate-removing enzyme acyl-protein thioesterase 1 (APT1), restores axonal transport, synapse homeostasis, and survival signaling to wild-type levels without toxicity. In human HD induced pluripotent stem cell-derived cortical neurons, ML348 increased BDNF trafficking. In HD knock-in mice, it efficiently crossed the blood-brain barrier to restore palmitoylation levels and reverse neuropathology, locomotor deficits, and anxio-depressive behaviors. APT1 and its inhibitor ML348 thus hold therapeutic interest for HD.


Asunto(s)
Enfermedad de Huntington , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lipoilación , Ratones , Proteómica
11.
Nat Commun ; 10(1): 4357, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554807

RESUMEN

Cell therapy products (CTP) derived from pluripotent stem cells (iPSCs) may constitute a renewable, specifically differentiated source of cells to potentially cure patients with neurodegenerative disorders. However, the immunogenicity of CTP remains a major issue for therapeutic approaches based on transplantation of non-autologous stem cell-derived neural grafts. Despite its considerable side-effects, long-term immunosuppression, appears indispensable to mitigate neuro-inflammation and prevent rejection of allogeneic CTP. Matching iPSC donors' and patients' HLA haplotypes has been proposed as a way to access CTP with enhanced immunological compatibility, ultimately reducing the need for immunosuppression. In the present work, we challenge this paradigm by grafting autologous, MHC-matched and mis-matched neuronal grafts in a primate model of Huntington's disease. Unlike previous reports in unlesioned hosts, we show that in the absence of immunosuppression MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain.


Asunto(s)
Rechazo de Injerto/inmunología , Enfermedad de Huntington/terapia , Células Madre Pluripotentes Inducidas/trasplante , Complejo Mayor de Histocompatibilidad/inmunología , Neuronas/trasplante , Animales , Diferenciación Celular/inmunología , Citotoxicidad Inmunológica/inmunología , Modelos Animales de Enfermedad , Prueba de Histocompatibilidad , Humanos , Enfermedad de Huntington/inmunología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Neuronas/citología , Neuronas/inmunología , Primates , Ratas Desnudas , Trasplante Autólogo
12.
Stem Cell Reports ; 13(3): 448-457, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31447328

RESUMEN

The mechanisms underlying the selective degeneration of medium spiny neurons (MSNs) in Huntington disease (HD) remain largely unknown. CTIP2, a transcription factor expressed by all MSNs, is implicated in HD pathogenesis because of its interactions with mutant huntingtin. Here, we report a key role for CTIP2 in protein phosphorylation via governing protein kinase A (PKA) signaling in human striatal neurons. Transcriptomic analysis of CTIP2-deficient MSNs implicates CTIP2 target genes at the heart of cAMP-Ca2+ signal integration in the PKA pathway. These findings are further supported by experimental evidence of a substantial reduction in phosphorylation of DARPP32 and GLUR1, two PKA targets in CTIP2-deficient MSNs. Moreover, we show that CTIP2-dependent dysregulation of protein phosphorylation is shared by HD hPSC-derived MSNs and striatal tissues of two HD mouse models. This study therefore establishes an essential role for CTIP2 in human MSN homeostasis and provides mechanistic and potential therapeutic insight into striatal neurodegeneration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Cuerpo Estriado/metabolismo , Edición Génica , Células Madre Embrionarias Humanas/citología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Neuronas/citología , Estrés Oxidativo , Fosforilación , Receptores AMPA/metabolismo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Transcriptoma , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
13.
Neurobiol Dis ; 130: 104484, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31132407

RESUMEN

As research progresses in the understanding of the molecular and cellular mechanisms underlying neurodegenerative diseases like Huntington's disease (HD) and expands towards preclinical work for the development of new therapies, highly relevant animal models are increasingly needed to test new hypotheses and to validate new therapeutic approaches. In this light, we characterized an excitotoxic lesion model of striatal dysfunction in non-human primates (NHPs) using cognitive and motor behaviour assessment as well as functional imaging and post-mortem anatomical analyses. NHPs received intra-striatal stereotaxic injections of quinolinic acid bilaterally in the caudate nucleus and unilaterally in the left sensorimotor putamen. Post-operative MRI scans showed atrophy of the caudate nucleus and a large ventricular enlargement in all 6 NHPs that correlated with post-mortem measurements. Behavioral analysis showed deficits in 2 analogues of the Wisconsin card sorting test (perseverative behavior) and in an executive task, while no deficits were observed in a visual recognition or an episodic memory task at 6 months following surgery. Spontaneous locomotor activity was decreased after lesion and the incidence of apomorphine-induced dyskinesias was significantly increased at 3 and 6 months following lesion. Positron emission tomography scans obtained at end-point showed a major deficit in glucose metabolism and D2 receptor density limited to the lesioned striatum of all NHPs compared to controls. Post-mortem analyses revealed a significant loss of medium-sized spiny neurons in the striatum, a loss of neurons and fibers in the globus pallidus, a unilateral decrease in dopaminergic neurons of the substantia nigra and a loss of neurons in the motor and dorsolateral prefrontal cortex. Overall, we show that this robust NHP model presents specific behavioral (learning, execution and retention of cognitive tests) and metabolic functional deficits that, to the best of our knowledge, are currently not mimicked in any available large animal model of striatal dysfunction. Moreover, we used non-invasive, translational techniques like behavior and imaging to quantify such deficits and found that they correlate to a significant cell loss in the striatum and its main input and output structures. This model can thus significantly contribute to the pre-clinical longitudinal evaluation of the ability of new therapeutic cell, gene or pharmacotherapy approaches in restoring the functionality of the striatal circuitry.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Enfermedad de Huntington , Trastornos Motores , Animales , Disfunción Cognitiva/inducido químicamente , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Enfermedad de Huntington/inducido químicamente , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Estudios Longitudinales , Macaca fascicularis , Masculino , Trastornos Motores/inducido químicamente , Ácido Quinolínico/toxicidad
14.
Stem Cell Reports ; 12(2): 230-244, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30639210

RESUMEN

Reappraisal of neuropathological studies suggests that pathological hallmarks of Alzheimer's disease and Parkinson's disease (PD) spread progressively along predictable neuronal pathways in the human brain through unknown mechanisms. Although there is much evidence supporting the prion-like propagation and amplification of α-synuclein (α-Syn) in vitro and in rodent models, whether this scenario occurs in the human brain remains to be substantiated. Here we reconstructed in microfluidic devices corticocortical neuronal networks using human induced pluripotent stem cells derived from a healthy donor. We provide unique experimental evidence that different strains of human α-Syn disseminate in "wild-type" human neuronal networks in a prion-like manner. We show that two distinct α-Syn strains we named fibrils and ribbons are transported, traffic between neurons, and trigger to different extents, in a dose- and structure-dependent manner, the progressive accumulation of PD-like pathological hallmarks. We further demonstrate that seeded aggregation of endogenous soluble α-Syn affects synaptic integrity and mitochondria morphology.


Asunto(s)
Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/metabolismo
15.
Stem Cell Reports ; 11(5): 1199-1210, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30409508

RESUMEN

Recent studies highlighted the importance of astrocytes in neuroinflammatory diseases, interacting closely with other CNS cells but also with the immune system. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still poorly characterized. Here, we develop a serum-free protocol to differentiate human induced pluripotent stem cells (hiPSCs) into astrocytes. Gene expression and functional assays show that our protocol consistently yields a highly enriched population of resting mature astrocytes across the 13 hiPSC lines differentiated. Using this model, we first highlight the importance of serum-free media for astrocyte culture to generate resting astrocytes. Second, we assess the astrocytic response to IL-1ß, TNF-α, and IL-6, all cytokines important in neuroinflammation, such as multiple sclerosis. Our study reveals very specific profiles of reactive astrocytes depending on the triggering stimulus. This model provides ideal conditions for in-depth and unbiased characterization of astrocyte reactivity in neuroinflammatory conditions.


Asunto(s)
Astrocitos/patología , Citocinas/farmacología , Células Madre Pluripotentes Inducidas/patología , Esclerosis Múltiple/patología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medio de Cultivo Libre de Suero , Humanos , Mediadores de Inflamación/metabolismo , Esclerosis Múltiple/genética , Fenotipo , Remielinización/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
16.
eNeuro ; 5(4)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310861

RESUMEN

The neurodegenerative Huntington's disease (HD) is caused by a polyglutamine (polyQ) amplification in the huntingtin protein (HTT). Currently there is no effective therapy available for HD; however, several efforts are directed to develop and optimize HTT-lowering methods to improve HD phenotypes. To validate these approaches, there is an immediate need for reliable, sensitive, and easily accessible methods to quantify HTT expression. Using the AlphaLISA platform, we developed two novel sensitive and robust assays for quantification of HTT in biological samples using commercially available antibodies. The first, a polyQ-independent assay, measures the total pool of HTT, while the second, a polyQ-dependent assay, preferentially detects the mutant form of HTT. Using purified HTT protein standards and brain homogenates from an HD mouse model, we determine a lower limit of quantification of 1 and 3 pm and optimal reproducibility with CV values lower than 7% for intra- and 20% for interassay. In addition, we used the assays to quantify HTT in neural stem cells generated from patient-derived induced pluripotent stem cells in vitro and in human brain tissue lysates. Finally, we could detect changes in HTT levels in a mouse model where mutant HTT was conditionally deleted in neural tissue, verifying the potential to monitor the outcome of HTT-lowering strategies. This analytical platform is ideal for high-throughput screens and thus has an added value for the HD community as a tool to optimize novel therapeutic approaches aimed at modulating HTT protein levels.


Asunto(s)
Proteína Huntingtina/análisis , Enfermedad de Huntington/diagnóstico , Inmunoensayo/normas , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunoensayo/métodos , Ratones , Mutación , Células-Madre Neurales , Reproducibilidad de los Resultados
17.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534157

RESUMEN

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Asunto(s)
Cuerpo Estriado/enzimología , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas Similares a Doblecortina , Regulación hacia Abajo/genética , Complejo IV de Transporte de Electrones/metabolismo , Fuerza de la Mano/fisiología , Enfermedad de Huntington/genética , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Stem Cell Res Ther ; 8(1): 285, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258610

RESUMEN

BACKGROUND: Epidermal grafting using cells derived from pluripotent stem cells will change the face of this side of regenerative cutaneous medicine. To date, the safety of the graft would be the major unmet deal in order to implement long-term skin grafting. In this context, experiments on large animals appear unavoidable to assess this question and possible rejection. Cellular tools for large animal models should be constructed. METHODS: In this study, we generated monkey pluripotent stem cell-derived keratinocytes and evaluated their capacities to reconstruct an epidermis, in vitro as well as in vivo. RESULTS: Monkey pluripotent stem cells were differentiated efficiently into keratinocytes able to reconstruct fully epidermis presenting a low level of major histocompatibility complex class-I antigens, opening the way for autologous or allogeneic epidermal long-term grafting. CONCLUSIONS: Functional keratinocytes generated from nonhuman primate embryonic stem cells and induced pluripotent stem cells reproduce an in-vitro and in-vivo stratified epidermis. These monkey skin grafts will be considered to model autologous or allogeneic epidermal grafting using either embryonic stem cells or induced pluripotent stem cells. This graft model will allow us to further investigate the safety, efficacy and immunogenicity of nonhuman primate PSC-derived epidermis in the perspective of human skin cell therapy.


Asunto(s)
Queratinocitos/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Haplorrinos , Queratinocitos/citología
19.
Cell Rep ; 20(12): 2980-2991, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930690

RESUMEN

Neurodegenerative disorders are a major public health problem because of the high frequency of these diseases. Genome editing with the CRISPR/Cas9 system is making it possible to modify the sequence of genes linked to these disorders. We designed the KamiCas9 self-inactivating editing system to achieve transient expression of the Cas9 protein and high editing efficiency. In the first application, the gene responsible for Huntington's disease (HD) was targeted in adult mouse neuronal and glial cells. Mutant huntingtin (HTT) was efficiently inactivated in mouse models of HD, leading to an improvement in key markers of the disease. Sequencing of potential off-targets with the constitutive Cas9 system in differentiated human iPSC revealed a very low incidence with only one site above background level. This off-target frequency was significantly reduced with the KamiCas9 system. These results demonstrate the potential of the self-inactivating CRISPR/Cas9 editing for applications in the context of neurodegenerative diseases.


Asunto(s)
Sistemas CRISPR-Cas/genética , Enfermedades del Sistema Nervioso Central/genética , Edición Génica , Animales , Astrocitos/citología , Astrocitos/metabolismo , Secuencia de Bases , Células Cultivadas , Corteza Cerebral/citología , Células HEK293 , Humanos , Proteína Huntingtina/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Ratones , Neuronas/citología , Neuronas/metabolismo
20.
Mol Ther Methods Clin Dev ; 5: 259-276, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28603746

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model. Here, we modified this vector for preclinical development by using a tat-independent third-generation LV (pCCL) backbone and removing the original reporter genes. We demonstrate that this novel vector efficiently downregulated HTT expression in vitro in striatal neurons derived from induced pluripotent stem cells (iPSCs) of HD patients. It reduced two major pathological HD hallmarks while triggering a minimal inflammatory response, up to 6 weeks after injection, when administered by stereotaxic surgery in the striatum of an in vivo rodent HD model. Further assessment of this shRNA vector in vitro showed proper processing by the endogenous silencing machinery, and we analyzed gene expression changes to identify potential off-targets. These preclinical data suggest that this new shRNA vector fulfills primary biosafety and efficiency requirements for further development in the clinic as a cure for HD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...