Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenomes ; 4(1)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968238

RESUMEN

The vast majority of previous studies on epigenetics in plants have centered on the study of inheritance of DNA methylation patterns in annual plants. In contrast, perennial plants may have the ability to accumulate changes in DNA methylation patterns over numerous years. However, currently little is known about long-lived perennial and clonally reproducing plants that may have evolved different DNA methylation inheritance mechanisms as compared to annual plants. To study the transmission of DNA methylation patterns in a perennial plant, we used apple (Malus domestica) as a model plant. First, we investigated the inheritance of DNA methylation patterns during sexual reproduction in apple by comparing DNA methylation patterns of mature trees to juvenile seedlings resulting from selfing. While we did not observe a drastic genome-wide change in DNA methylation levels, we found clear variations in DNA methylation patterns localized in regions enriched for genes involved in photosynthesis. Using transcriptomics, we also observed that genes involved in this pathway were overexpressed in seedlings. To assess how DNA methylation patterns are transmitted during clonal propagation we then compared global DNA methylation of a newly grafted tree to its mature donor tree. We identified significant, albeit weak DNA methylation changes resulting from grafting. Overall, we found that a majority of DNA methylation patterns from the mature donor tree are transmitted to newly grafted plants, however with detectable specific local differences. Both the epigenomic and transcriptomic data indicate that grafted plants are at an intermediate phase between an adult tree and seedling and inherit part of the epigenomic history of their donor tree.

2.
J Exp Bot ; 70(4): 1349-1365, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30715439

RESUMEN

Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Genes de Plantas , Péptidos y Proteínas de Señalización Intercelular/fisiología , Familia de Multigenes , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Raíces de Plantas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...