Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2214636120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37769257

RESUMEN

Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.


Asunto(s)
Ritmo Circadiano , Perfilado de Ribosomas , Sueño , Animales , Ratones , Ritmo Circadiano/genética , Luciferasas/genética , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Sueño/genética , Proteínas Circadianas Period/genética
2.
Proc Natl Acad Sci U S A ; 120(24): e2216144120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276409

RESUMEN

Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4ß, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Bicarbonatos , Ecosistema , Calcio , Arrecifes de Coral
3.
Animals (Basel) ; 13(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370478

RESUMEN

Gaining insights into the utilization of farm-level data for decision-making within the beef industry is vital for improving production and profitability. In this study, we present a statistical model to predict the carcass weight (CW) of grass-fed beef cattle at different stages before slaughter using historical cattle data. Models were developed using two approaches: boosted regression trees and multiple linear regression. A sample of 2995 grass-fed beef cattle from 3 major properties in Northern Australia was used in the modeling. Four timespans prior to the slaughter, i.e., 1 month, 3 months, 9-10 months, and at weaning, were considered in the predictive modelling. Seven predictors, i.e., weaning weight, weight gain since weaning to each stage before slaughter, time since weaning to each stage before slaughter, breed, sex, weaning season (wet and dry), and property, were used as the potential predictors of the CW. To assess the predictive performance in each scenario, a test set which was not used to train the models was utilized. The results showed that the CW of the cattle was strongly associated with the animal's body weight at each stage before slaughter. The results showed that the CW can be predicted with a mean absolute percentage error (MAPE) of 4% (~12-16 kg) at three months before slaughter. The predictive error increased gradually when moving away from the slaughter date, e.g., the prediction error at weaning was ~8% (~20-25 kg). The overall predictive performances of the two statistical approaches was approximately similar, and neither of the models substantially outperformed each other. Predicting the CW in advance of slaughter may allow farmers to adequately prepare for forthcoming needs at the farm level, such as changing husbandry practices, control inventory, and estimate price return, thus allowing them to maximize the profitability of the industry.

4.
CRISPR J ; 5(3): 410-421, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35686976

RESUMEN

The design of CRISPR-Cas9 guide RNAs is not trivial and is a computationally demanding task. Design tools need to identify target sequences that will maximize the likelihood of obtaining the desired cut, while minimizing off-target risk. There is a need for a tool that can meet both objectives while remaining practical to use on large genomes. In this study, we present Crackling, a new method that is more suitable for meeting these objectives. We test its performance on 12 genomes and on data from validation studies. Crackling maximizes guide efficiency by combining multiple scoring approaches. On experimental data, the guides it selects are better than those selected by others. It also incorporates Inverted Signature Slice Lists (ISSL) for faster off-target scoring. ISSL provides a gain of an order of magnitude in speed compared with other popular tools, such as Cas-OFFinder, Crisflash, and FlashFry, while preserving the same level of accuracy. Overall, this makes Crackling a faster and better method to design guide RNAs at scale. Crackling is available at https://github.com/bmds-lab/Crackling under the Berkeley Software Distribution (BSD) 3-Clause license.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma , ARN Guía de Kinetoplastida/genética , Programas Informáticos
5.
ArXiv ; 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35547240

RESUMEN

The COVID-19 pandemic has presented many challenges that have spurred biotechnological research to address specific problems. Diagnostics is one area where biotechnology has been critical. Diagnostic tests play a vital role in managing a viral threat by facilitating the detection of infected and/or recovered individuals. From the perspective of what information is provided, these tests fall into two major categories, molecular and serological. Molecular diagnostic techniques assay whether a virus is present in a biological sample, thus making it possible to identify individuals who are currently infected. Additionally, when the immune system is exposed to a virus, it responds by producing antibodies specific to the virus. Serological tests make it possible to identify individuals who have mounted an immune response to a virus of interest and therefore facilitate the identification of individuals who have previously encountered the virus. These two categories of tests provide different perspectives valuable to understanding the spread of SARS-CoV-2. Within these categories, different biotechnological approaches offer specific advantages and disadvantages. Here we review the categories of tests developed for the detection of the SARS-CoV-2 virus or antibodies against SARS-CoV-2 and discuss the role of diagnostics in the COVID-19 pandemic.

6.
Front Genet ; 13: 643592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295949

RESUMEN

We present a novel approach to the Metagenomic Geolocation Challenge based on random projection of the sample reads from each location. This approach explores the direct use of k-mer composition to characterise samples so that we can avoid the computationally demanding step of aligning reads to available microbial reference sequences. Each variable-length read is converted into a fixed-length, k-mer-based read signature. Read signatures are then clustered into location signatures which provide a more compact characterisation of the reads at each location. Classification is then treated as a problem in ranked retrieval of locations, where signature similarity is used as a measure of similarity in microbial composition. We evaluate our approach using the CAMDA 2020 Challenge dataset and obtain promising results based on nearest neighbour classification. The main findings of this study are that k-mer representations carry sufficient information to reveal the origin of many of the CAMDA 2020 Challenge metagenomic samples, and that this reference-free approach can be achieved with much less computation than methods that need reads to be assigned to operational taxonomic units-advantages which become clear through comparison to previously published work on the CAMDA 2019 Challenge data.

7.
NPJ Digit Med ; 4(1): 53, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742069

RESUMEN

Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).

8.
Proc Natl Acad Sci U S A ; 117(46): 28899-28905, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33168726

RESUMEN

Reef-building corals are keystone species that are threatened by anthropogenic stresses including climate change. To investigate corals' responses to stress and other aspects of their biology, numerous genomic and transcriptomic studies have been performed, generating many hypotheses about the roles of particular genes and molecular pathways. However, it has not generally been possible to test these hypotheses rigorously because of the lack of genetic tools for corals or closely related cnidarians. CRISPR technology seems likely to alleviate this problem. Indeed, we show here that microinjection of single-guide RNA/Cas9 ribonucleoprotein complexes into fertilized eggs of the coral Acropora millepora can produce a sufficiently high frequency of mutations to detect a clear phenotype in the injected generation. Based in part on experiments in a sea-anemone model system, we targeted the gene encoding Heat Shock Transcription Factor 1 (HSF1) and obtained larvae in which >90% of the gene copies were mutant. The mutant larvae survived well at 27 °C but died rapidly at 34 °C, a temperature that did not produce detectable mortality over the duration of the experiment in wild-type (WT) larvae or larvae injected with Cas9 alone. We conclude that HSF1 function (presumably its induction of genes in response to heat stress) plays an important protective role in corals. More broadly, we conclude that CRISPR mutagenesis in corals should allow wide-ranging and rigorous tests of gene function in both larval and adult corals.


Asunto(s)
Antozoos/genética , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/genética , Animales , Antozoos/fisiología , Cambio Climático , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Biología Computacional/métodos , Arrecifes de Coral , Edición Génica/métodos , Genoma/genética , Genómica/métodos , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Mutación/genética , Fenotipo , Temperatura , Transcriptoma/genética
9.
BMC Genomics ; 20(Suppl 9): 931, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874627

RESUMEN

BACKGROUND: CRISPR-based systems are playing an important role in modern genome engineering. A large number of computational methods have been developed to assist in the identification of suitable guides. However, there is only limited overlap between the guides that each tool identifies. This can motivate further development, but also raises the question of whether it is possible to combine existing tools to improve guide design. RESULTS: We considered nine leading guide design tools, and their output when tested using two sets of guides for which experimental validation data is available. We found that consensus approaches were able to outperform individual tools. The best performance (with a precision of up to 0.912) was obtained when combining four of the tools and accepting all guides selected by at least three of them. CONCLUSIONS: These results can be used to improve CRISPR-based studies, but also to guide further tool development. However, they only provide a short-term solution as the time and computational resources required to run four tools may be impractical in certain applications.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Programas Informáticos , Sistemas CRISPR-Cas
10.
PLoS Comput Biol ; 15(8): e1007274, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31465436

RESUMEN

The popularity of CRISPR-based gene editing has resulted in an abundance of tools to design CRISPR-Cas9 guides. This is also driven by the fact that designing highly specific and efficient guides is a crucial, but not trivial, task in using CRISPR for gene editing. Here, we thoroughly analyse the performance of 18 design tools. They are evaluated based on runtime performance, compute requirements, and guides generated. To achieve this, we implemented a method for auditing system resources while a given tool executes, and tested each tool on datasets of increasing size, derived from the mouse genome. We found that only five tools had a computational performance that would allow them to analyse an entire genome in a reasonable time, and without exhausting computing resources. There was wide variation in the guides identified, with some tools reporting every possible guide while others filtered for predicted efficiency. Some tools also failed to exclude guides that would target multiple positions in the genome. We also considered two collections with over a thousand guides each, for which experimental data is available. There is a lot of variation in performance between the datasets, but the relative order of the tools is partially conserved. Importantly, the most striking result is a lack of consensus between the tools. Our results show that CRISPR-Cas9 guide design tools need further work in order to achieve rapid whole-genome analysis and that improvements in guide design will likely require combining multiple approaches.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Animales , Benchmarking/métodos , Benchmarking/estadística & datos numéricos , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Edición Génica/normas , Edición Génica/estadística & datos numéricos , Ratones , Programas Informáticos
11.
Nucleic Acids Res ; 47(8): 3846-3861, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30864654

RESUMEN

HepG2 is one of the most widely used human cancer cell lines in biomedical research and one of the main cell lines of ENCODE. Although the functional genomic and epigenomic characteristics of HepG2 are extensively studied, its genome sequence has never been comprehensively analyzed and higher order genomic structural features are largely unknown. The high degree of aneuploidy in HepG2 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from HepG2 requires an understanding of the cell line's genome sequence and genome structure. Using a variety of sequencing and analysis methods, we identified a wide spectrum of genome characteristics in HepG2: copy numbers of chromosomal segments at high resolution, SNVs and Indels (corrected for aneuploidy), regions with loss of heterozygosity, phased haplotypes extending to entire chromosome arms, retrotransposon insertions and structural variants (SVs) including complex and somatic genomic rearrangements. A large number of SVs were phased, sequence assembled and experimentally validated. We re-analyzed published HepG2 datasets for allele-specific expression and DNA methylation and assembled an allele-specific CRISPR/Cas9 targeting map. We demonstrate how deeper insights into genomic regulatory complexity are gained by adopting a genome-integrated framework.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano , Genómica/métodos , Haplotipos , Análisis de Secuencia de ADN/estadística & datos numéricos , Alelos , Aneuploidia , Metilación de ADN , Variación Estructural del Genoma , Células Hep G2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Cariotipificación , Pérdida de Heterocigocidad , Polimorfismo de Nucleótido Simple , Retroelementos
12.
Genome Res ; 29(3): 472-484, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30737237

RESUMEN

K562 is widely used in biomedical research. It is one of three tier-one cell lines of ENCODE and also most commonly used for large-scale CRISPR/Cas9 screens. Although its functional genomic and epigenomic characteristics have been extensively studied, its genome sequence and genomic structural features have never been comprehensively analyzed. Such information is essential for the correct interpretation and understanding of the vast troves of existing functional genomics and epigenomics data for K562. We performed and integrated deep-coverage whole-genome (short-insert), mate-pair, and linked-read sequencing as well as karyotyping and array CGH analysis to identify a wide spectrum of genome characteristics in K562: copy numbers (CN) of aneuploid chromosome segments at high-resolution, SNVs and indels (both corrected for CN in aneuploid regions), loss of heterozygosity, megabase-scale phased haplotypes often spanning entire chromosome arms, structural variants (SVs), including small and large-scale complex SVs and nonreference retrotransposon insertions. Many SVs were phased, assembled, and experimentally validated. We identified multiple allele-specific deletions and duplications within the tumor suppressor gene FHIT Taking aneuploidy into account, we reanalyzed K562 RNA-seq and whole-genome bisulfite sequencing data for allele-specific expression and allele-specific DNA methylation. We also show examples of how deeper insights into regulatory complexity are gained by integrating genomic variant information and structural context with functional genomics and epigenomics data. Furthermore, using K562 haplotype information, we produced an allele-specific CRISPR targeting map. This comprehensive whole-genome analysis serves as a resource for future studies that utilize K562 as well as a framework for the analysis of other cancer genomes.


Asunto(s)
Genoma Humano , Humanos , Células K562 , Cariotipo , Polimorfismo Genético , Secuenciación Completa del Genoma
13.
BMC Bioinformatics ; 19(Suppl 20): 509, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577803

RESUMEN

BACKGROUND: Sequencing highly-variable 16S regions is a common and often effective approach to the study of microbial communities, and next-generation sequencing (NGS) technologies provide abundant quantities of data for analysis. However, the speed of existing analysis pipelines may limit our ability to work with these quantities of data. Furthermore, the limited coverage of existing 16S databases may hamper our ability to characterise these communities, particularly in the context of complex or poorly studied environments. RESULTS: In this article we present the SigClust algorithm, a novel clustering method involving the transformation of sequence reads into binary signatures. When compared to other published methods, SigClust yields superior cluster coherence and separation of metagenomic read data, while operating within substantially reduced timeframes. We demonstrate its utility on published Illumina datasets and on a large collection of labelled wound reads sourced from patients in a wound clinic. The temporal analysis is based on tracking the dominant clusters of wound samples over time. The analysis can identify markers of both healing and non-healing wounds in response to treatment. Prominent clusters are found, corresponding to bacterial species known to be associated with unfavourable healing outcomes, including a number of strains of Staphylococcus aureus. CONCLUSIONS: SigClust identifies clusters rapidly and supports an improved understanding of the wound microbiome without reliance on a reference database. The results indicate a promising use for a SigClust-based pipeline in wound analysis and prediction, and a possible novel method for wound management and treatment.


Asunto(s)
Análisis de Datos , Metagenómica/métodos , Algoritmos , Análisis por Conglomerados , Humanos , Microbiota/genética
14.
Nat Commun ; 9(1): 5229, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523329

RESUMEN

Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.


Asunto(s)
Algoritmos , Narcolepsia/fisiopatología , Redes Neurales de la Computación , Fases del Sueño/fisiología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Cadenas beta de HLA-DQ/análisis , Humanos , Masculino , Persona de Mediana Edad , Narcolepsia/diagnóstico , Narcolepsia/inmunología , Polisomnografía , Sensibilidad y Especificidad , Fases del Sueño/inmunología , Adulto Joven
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 566-569, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440460

RESUMEN

Recent progress in tissue clearing allows the imaging of entire organs at single-cell resolution. A necessary step in analysing these images is registration across samples. Existing methods of registration were developed for lower resolution image modalities (e.g., MRI) and it is unclear whether their performance and accuracy is satisfactory at this larger scale (several gigabytes for a whole mouse brain). In this study, we evaluated five freely available image registration tools. We used several performance metrics to assess accuracy, and completion time as a measure of efficiency. The results of this evaluation suggest that ANTS provides the best registration accuracy, while Elastix has the highest computational efficiency among the methods with an acceptable accuracy. The results also highlight the need to develop new registration methods optimised for these high-resolution 3D images.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Algoritmos , Animales , Ratones
16.
F1000Res ; 7: 1286, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271588

RESUMEN

Biological networks are highly modular and contain a large number of clusters, which are often associated with a specific biological function or disease. Identifying these clusters, or modules, is therefore valuable, but it is not trivial. In this article we propose a recursive method based on the Louvain algorithm for community detection and the PageRank algorithm for authoritativeness weighting in networks. PageRank is used to initialise the weights of nodes in the biological network; the Louvain algorithm with the Newman-Girvan criterion for modularity is then applied to the network to identify modules. Any identified module with more than k nodes is further processed by recursively applying PageRank and Louvain, until no module contains more than k nodes (where k is a parameter of the method, no greater than 100). This method is evaluated on a heterogeneous set of six biological networks from the Disease Module Identification DREAM Challenge. Empirical findings suggest that the method is effective in identifying a large number of significant modules, although with substantial variability across restarts of the method.


Asunto(s)
Algoritmos
17.
Cell Rep ; 24(9): 2231-2247.e7, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157420

RESUMEN

Sleep regulation involves interdependent signaling among specialized neurons in distributed brain regions. Although acetylcholine promotes wakefulness and rapid eye movement (REM) sleep, it is unclear whether the cholinergic pathway is essential (i.e., absolutely required) for REM sleep because of redundancy from neural circuits to molecules. First, we demonstrate that synaptic inhibition of TrkA+ cholinergic neurons causes a severe short-sleep phenotype and that sleep reduction is mostly attributable to a shortened sleep duration in the dark phase. Subsequent comprehensive knockout of acetylcholine receptor genes by the triple-target CRISPR method reveals that a similar short-sleep phenotype appears in the knockout of two Gq-type acetylcholine receptors Chrm1 and Chrm3. Strikingly, Chrm1 and Chrm3 double knockout chronically diminishes REM sleep to an almost undetectable level. These results suggest that muscarinic acetylcholine receptors, Chrm1 and Chrm3, are essential for REM sleep.


Asunto(s)
Acetilcolina/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Sueño REM/genética , Animales , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
18.
IEEE Rev Biomed Eng ; 11: 53-67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29993607

RESUMEN

The market for smartphones, smartwatches, and wearable devices is booming. In recent years, individuals and researchers have used these devices as additional tools to monitor and track sleep, physical activity, and behavior. Their use in sleep research and clinical applications could address the difficulties in scaling up studies that rely on polysomnography, the gold-standard. However, the use of commercial devices for large-scale sleep studies is not without challenges. With this in mind, this paper presents an extensive review of sleep monitoring systems and the techniques used in their development. We also discuss their performance in terms of reliability and validity, and consider the needs and expectations of users, whether they are experts, patients, or the general public. Through this review, we highlight a number of challenges with current studies: a lack of standard evaluation methods for consumer-grade devices (e.g., reliability and validity assessment); limitations in the populations studied; consumer expectations of monitoring devices; constraints on the resources of consumer-grade devices (e.g., power consumption).


Asunto(s)
Polisomnografía , Actigrafía , Humanos , Teléfono Inteligente , Dispositivos Electrónicos Vestibles
19.
Neuron ; 90(1): 70-85, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26996081

RESUMEN

The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca(2+)-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca(2+)-dependent K(+) channels (Kcnn2 and Kcnn3), voltage-gated Ca(2+) channels (Cacna1g and Cacna1h), or Ca(2+)/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca(2+) ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca(2+)-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Sueño/genética , Animales , Canales de Calcio Tipo T/genética , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Simulación por Computador , Maleato de Dizocilpina/farmacología , Electroencefalografía , Electromiografía , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Fenciclidina/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sueño/efectos de los fármacos , Sueño REM/efectos de los fármacos , Sueño REM/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Factores de Tiempo
20.
Cell Rep ; 14(3): 662-677, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26774482

RESUMEN

The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research.


Asunto(s)
Receptores de N-Metil-D-Aspartato/genética , Genética Inversa , Sueño/fisiología , Vigilia/fisiología , Animales , Sistemas CRISPR-Cas/genética , Electroencefalografía , Electromiografía , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monofenol Monooxigenasa/deficiencia , Monofenol Monooxigenasa/genética , Fenotipo , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...