Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 33(11): 855-860, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37584473

RESUMEN

Cell surface glycans play essential roles in diverse physiological and pathological processes and their assessment has important implications in biomedicine and biotechnology. Here we present a rapid, versatile, and single-step multicolor flow cytometry method for evaluation of cell surface glycan signatures using a panel of selected fluorochrome-conjugated lectins. This procedure allows simultaneous detection of cell surface glycans with a 10-fold reduction in the number of cells required compared with traditional multistep lectin staining methods. Interestingly, we used this one-step lectin array coupled with dimension reduction algorithms in a proof-of-concept application for discrimination among different tumor and immune cell populations. Moreover, this procedure was also able to unveil T-, B-, and myeloid cell subclusters exhibiting differential glycophenotypes. Thus, we report a rapid and versatile lectin cytometry method to simultaneously detect a particular repertoire of surface glycans on living cells that can be easily implemented in different laboratories and core facilities.


Asunto(s)
Colorantes Fluorescentes , Lectinas , Lectinas/metabolismo , Polisacáridos/metabolismo , Membrana Celular/metabolismo
2.
Biochem J ; 478(3): 597-617, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33600595

RESUMEN

A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of ß-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.


Asunto(s)
Galectinas/fisiología , Metástasis de la Neoplasia/prevención & control , Proteínas de Neoplasias/fisiología , Inmunidad Adaptativa , Animales , Anticuerpos Neutralizantes/farmacología , Aptámeros de Nucleótidos/farmacología , Carbohidratos/farmacología , Movimiento Celular , Ensayos Clínicos Fase I como Asunto , Transición Epitelial-Mesenquimal/fisiología , Matriz Extracelular/metabolismo , Galectinas/antagonistas & inhibidores , Humanos , Inmunidad Innata , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/antagonistas & inhibidores , Células Neoplásicas Circulantes , Neovascularización Patológica/metabolismo , Oligopéptidos/farmacología , Péptidos/farmacología , Polisacáridos/fisiología , ARN Interferente Pequeño/farmacología , Células del Estroma/metabolismo , Microambiente Tumoral/fisiología
3.
Glycobiology ; 31(8): 891-907, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-33498084

RESUMEN

The relevance of glycan-binding proteins in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins, both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain, atypical secretion via an endoplasmic reticulum-Golgi-independent pathway and by the ability to recognize ß-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family, displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to delineate tailored therapeutic strategies aimed at positively or negatively modulating this glycan-binding protein in pathologic inflammatory conditions.


Asunto(s)
Galectina 1 , Galectinas , Carbohidratos , Galectina 1/genética , Galectinas/metabolismo , Humanos , Inflamación/metabolismo , Polisacáridos/metabolismo
4.
Cancer Res ; 81(5): 1375-1387, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268529

RESUMEN

The role of active antitumor immunity in hormone receptor-positive (HR+) breast cancer has been historically underlooked. The aim of this study was to determine the contribution of the immune system to antiprogestin-induced tumor growth inhibition using a hormone-dependent breast cancer model. BALB/c-GFP+ bone marrow (BM) cells were transplanted into immunodeficient NSG mice to generate an immunocompetent NSG/BM-GFP+ (NSG-R) mouse model. Treatment with the antiprogestin mifepristone (MFP) inhibited growth of 59-2-HI tumors with similar kinetics in both animal models. Interestingly, MFP treatment reshaped the tumor microenvironment, enhancing the production of proinflammatory cytokines and chemokines. Tumors in MFP-treated immunocompetent mice showed increased infiltration of F4/80+ macrophages, natural killer, and CD8 T cells, displaying a central memory phenotype. Mechanistically, MFP induced immunogenic cell death (ICD) in vivo and in vitro, as depicted by the expression and subcellular localization of the alarmins calreticulin and HMGB-1 and the induction of an ICD gene program. Moreover, MFP-treated tumor cells efficiently activated immature dendritic cells, evidenced by enhanced expression of MHC-II and CD86, and induced a memory T-cell response, attenuating tumor onset and growth after re-challenge. Finally, MFP treatment increased the sensitivity of HR+ 59-2-HI tumor to PD-L1 blockade, suggesting that antiprogestins may improve immunotherapy response rates. These results contribute to a better understanding of the mechanisms underlying the antitumor effect of hormonal treatment and the rational design of therapeutic combinations based on endocrine and immunomodulatory agents in HR+ breast cancer. SIGNIFICANCE: Antiprogestin therapy induces immunogenic tumor cell death in PRA-overexpressing tumors, eliciting an adaptive immune memory response that protects mice from future tumor recurrence and increases sensitivity to PD-L1 blockade. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/5/1375/F1.large.jpg.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Femenino , Humanos , Memoria Inmunológica/efectos de los fármacos , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Ratones Transgénicos , Mifepristona/farmacología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
5.
Front Physiol ; 7: 151, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199766

RESUMEN

Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...