Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
2.
Neuro Oncol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212325

RESUMEN

Meningiomas are the most frequent primary intracranial tumors. Hence, they constitute a major share of diagnostic specimens in neuropathology practice. The 2021 WHO Classification of Central Nervous System Tumors ("CNS5") has introduced the first molecular grading parameters for meningioma with oncogenic variants in the TERT promoter and homozygous deletion of CDKN2A/B as markers for CNS WHO grade 3. However, after publication of the new classification volume, clarifications were requested, not only on novel but also on long-standing questions in meningioma grading that were beyond the scope of the WHO "blue book". In addition, more recent research into possible new molecular grading parameters could not yet be implemented in the 2021 classification but constitute a compelling body of literature. Hence, the cIMPACT-NOW Steering Committee convened a working group to provide such clarification and assess the evidence of possible novel molecular criteria. As a result, this cIMPACT-NOW update provides guidance for more standardized morphological evaluation and interpretation, most prominently pertaining to brain invasion, identifies scenarios in which advanced molecular testing is recommended, proposes to assign CNS WHO grade 2 for cases with CNS WHO grade 1 morphology but chromosomal arm 1p deletion in combination with 22q deletion and/or NF2 oncogenic variants, and discusses areas in which the current evidence is not yet sufficient to result in new recommendations.

3.
Neuro Oncol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207122

RESUMEN

BACKGROUND: Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with local recurrence and hematogenous metastasis. The cell states and spatial transcriptomic architecture underlying the unique clinical behavior of meningeal SFTs are unknown. METHODS: Single-cell (n=4), spatial (n=8), and bulk RNA sequencing (n=22) was used to define the cell states and spatial transcriptomic architecture of meningeal SFTs across histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. Immunofluorescence, immunohistochemistry, and comparison of single-cell types to meningiomas, or to cerebral vascular development or homeostasis, were used for validation. RESULTS: Here we show meningeal SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development or homeostasis. Single-cell trajectory analysis and pseudotemporal ordering of single-cells suggest that meningeal SFT cell fate decisions are dynamic and interchangeable. Cell-cell communication analyses demonstrate receptor-ligand interactions throughout the meningeal SFT microenvironment, particularly between SFT cells, endothelia, and immature neurons. Direct comparison of single-cell transcriptomes from meningeal SFTs versus meningiomas shows that SFT cells are enriched in expression of endothelial markers while meningiomas cells are enriched in expression of mural cells markers. Meningeal SFT spatial transcriptomes show regionally distinct intratumor heterogeneity in cell states, gene expression programs, and cell-cell interactions across WHO histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. CONCLUSIONS: These results shed light on pathways underlying meningeal SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell, spatial, and bulk RNA sequencing data across human cancers and normal tissues.

5.
Nat Genet ; 56(6): 1121-1133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760638

RESUMEN

Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.


Asunto(s)
Heterogeneidad Genética , Neoplasias Meníngeas , Meningioma , Meningioma/genética , Meningioma/patología , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Análisis de la Célula Individual , Proliferación Celular/genética , Recurrencia Local de Neoplasia/genética , Transducción de Señal/genética , Línea Celular Tumoral , Transcriptoma
6.
Cancer Discov ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742767

RESUMEN

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival.

7.
Neuro Oncol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695575

RESUMEN

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

9.
Acta Neuropathol Commun ; 12(1): 42, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500181

RESUMEN

Central nervous system (CNS) embryonal tumors are a heterogeneous group of high-grade malignancies, and the increasing clinical use of methylation profiling and next-generation sequencing has led to the identification of molecularly distinct subtypes. One proposed tumor type, CNS tumor with BRD4::LEUTX fusion, has been described. As only a few CNS tumors with BRD4::LEUTX fusions have been described, we herein characterize a cohort of 9 such cases (4 new, 5 previously published) to further describe their clinicopathologic and molecular features. We demonstrate that CNS embryonal tumor with BRD4::LEUTX fusion comprises a well-defined methylation class/cluster. We find that patients are young (4 years or younger), with large tumors at variable locations, and frequently with evidence of leptomeningeal/cerebrospinal fluid (CSF) dissemination. Histologically, tumors were highly cellular with high-grade embryonal features. Immunohistochemically, 5/5 cases showed synaptophysin and 4/5 showed OLIG2 expression, thus overlapping with CNS neuroblastoma, FOXR2-activated. DNA copy number profiles were generally flat; however, two tumors had chromosome 1q gains. No recurring genomic changes, besides the presence of the fusion, were found. The LEUTX portion of the fusion transcript was constant in all cases assessed, while the BRD4 portion varied but included a domain with proto-oncogenic activity in all cases. Two patients with clinical follow up available had tumors with excellent response to chemotherapy. Two of our patients were alive without evidence of recurrence or progression after gross total resection and chemotherapy at 16 and 33 months. One patient relapsed, and the last of our four patients died of disease one month after diagnosis. Overall, this case series provides additional evidence for this as a distinct tumor type defined by the presence of a specific fusion as well as a distinct DNA methylation signature. Studies on larger series are required to further characterize these tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias de Células Germinales y Embrionarias , Humanos , Neoplasias Encefálicas/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias de Células Germinales y Embrionarias/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Factores de Transcripción Forkhead , Proteínas de Homeodominio
10.
Brain Pathol ; : e13256, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523251

RESUMEN

Meningeal solitary fibrous tumors (SFT) are rare and have a high frequency of local recurrence and distant metastasis. In a cohort of 126 patients (57 female, 69 male; mean age at surgery 53.0 years) with pathologically confirmed meningeal SFTs with extended clinical follow-up (median 9.9 years; range 15 days-43 years), we performed extensive molecular characterization including genome-wide DNA methylation profiling (n = 80) and targeted TERT promoter mutation testing (n = 98). Associations were examined with NAB2::STAT6 fusion status (n = 101 cases; 51 = ex5-7::ex16-17, 26 = ex4::ex2-3; 12 = ex2-3::exANY/other and 12 = no fusion) and placed in the context of 2021 Central Nervous System (CNS) WHO grade. NAB2::STAT6 fusion breakpoints (fusion type) were significantly associated with metastasis-free survival (MFS) (p = 0.03) and, on multivariate analysis, disease-specific survival (DSS) when adjusting for CNS WHO grade (p = 0.03). DNA methylation profiling revealed three distinct clusters: Cluster 1 (n = 38), Cluster 2 (n = 22), and Cluster 3 (n = 20). Methylation clusters were significantly associated with fusion type (p < 0.001), with Cluster 2 harboring ex4::ex2-3 fusion in 16 (of 20; 80.0%), nearly all TERT promoter mutations (7 of 8; 87.5%), and predominantly an "SFT" histologic phenotype (15 of 22; 68.2%). Clusters 1 and 3 were less distinct, both dominated by tumors having ex5-7::ex16-17 fusion (respectively, 25 of 33; 75.8%, and 12 of 18; 66.7%) and with variable histological phenotypes. Methylation clusters were significantly associated with MFS (p = 0.027), but not overall survival (OS). In summary, NAB2::STAT6 fusion type was significantly associated with MFS and DSS, suggesting that tumors with an ex5::ex16-17 fusion may have inferior patient outcomes. Methylation clusters were significantly associated with fusion type, TERT promoter mutation status, histologic phenotype, and MFS.

11.
J Neurosurg Case Lessons ; 7(5)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285975

RESUMEN

BACKGROUND: Neuromuscular choristomas (NMCs) are rare tumors involving aberrant intercalation of muscle fibers into peripheral nerves, most commonly the sciatic nerve. Although benign, these lesions risk developing into NMCs with desmoid-type fibrosis (NMC-DTFs), aggressive lesions potentially requiring amputation. Currently, information on NMCs and the link between NMCs and NMC-DTFs is limited in adults, with the majority of cases reported in children. We present the case of a 66-year-old male with a sciatic NMC alongside a Preferred Reporting Items for Systematic Reviews and Meta-Analyses-based systematic review of similar cases to better characterize this lesion in the adult population. OBSERVATIONS: A male presented with 10 years of progressive left lower-extremity weakness and paresthesia, and a mildly enlarged proximal sciatic nerve was discovered on magnetic resonance imaging. He underwent left sciatic fascicular nerve biopsy, with histopathological examination identifying the lesion as an NMC. The literature review revealed that our case, alongside other cases of adults with NMCs, shared characteristics similar to NMCs in the pediatric population. LESSONS: More comprehensive studies of adults with NMCs are needed, as the current literature contains limited information concerning disease course, diagnostic characteristics, and treatment. Furthermore, NMCs in adults should be handled with care because of the increased likelihood of transformation to NMC-DTF after surgical intervention.

12.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216587

RESUMEN

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Asunto(s)
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patología , Epigénesis Genética , Reprogramación Celular/genética , Microambiente Tumoral/genética
13.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216572

RESUMEN

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Asunto(s)
Neurilemoma , Neurofibromatosis , Neurofibromatosis 1 , Neurofibromatosis 2 , Animales , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/metabolismo , Neurofibromatosis/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/patología , Células de Schwann/metabolismo , Resistencia a Antineoplásicos/genética
14.
Neuro Oncol ; 26(2): 335-347, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37758193

RESUMEN

BACKGROUND: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS: A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION: The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Vacunas contra el Cáncer , Glioma , Péptidos , Humanos , Proyectos Piloto , Leucocitos Mononucleares , Estudios Prospectivos , Glioma/tratamiento farmacológico , Diferenciación Celular , Microambiente Tumoral
15.
Neuro Oncol ; 26(3): 407-416, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38146999

RESUMEN

Within the last few decades, we have witnessed tremendous advancements in the study of pediatric low-grade gliomas (pLGG), leading to a much-improved understanding of their molecular underpinnings. Consequently, we have achieved successful milestones in developing and implementing targeted therapeutic agents for treating these tumors. However, the community continues to face many unknowns when it comes to the most effective clinical implementation of these novel targeted inhibitors or combinations thereof. Questions encompassing optimal dosing strategies, treatment duration, methods for assessing clinical efficacy, and the identification of predictive biomarkers remain unresolved. Here, we offer the consensus of the international pLGG coalition (iPLGGc) clinical trial working group on these important topics and comment on clinical trial design and endpoint rationale. Throughout, we seek to standardize the global approach to early clinical trials (phase I and II) for pLGG, leading to more consistently interpretable results as well as enhancing the pace of novel therapy development and encouraging an increased focus on functional endpoints as well and quality of life for children faced with this disease.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Adolescente , Niño , Humanos , Adulto Joven , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Consenso , Glioma/tratamiento farmacológico , Glioma/patología , Calidad de Vida , Resultado del Tratamiento , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Guías de Práctica Clínica como Asunto
16.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079020

RESUMEN

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Niño , Persona de Mediana Edad , Anciano , Glioblastoma/genética , Glioblastoma/patología , Inhibidores de Puntos de Control Inmunológico , Homocigoto , Estudios Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Eliminación de Secuencia , Mutación/genética , Isocitrato Deshidrogenasa/genética
17.
Res Sq ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546798

RESUMEN

Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with hematogenous metastasis, and the cell states and spatial transcriptomic architecture of SFTs are unknown. Here we use single-cell and spatial RNA sequencing to show SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development and homeostasis. Our results shed light on pathways underlying SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell and spatial transcriptomic data from human cancers and normal tissues.

18.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503127

RESUMEN

Meningiomas are the most common primary intracranial tumors1-3. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental4,5. Resistance to radiotherapy is common in high-grade meningiomas6, and the cell types and signaling mechanisms driving meningioma tumorigenesis or resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find NOTCH3+ meningioma mural cells are conserved across meningiomas from humans, dogs, and mice. NOTCH3+ cells are restricted to the perivascular niche during meningeal development and homeostasis and in low-grade meningiomas but are expressed throughout high-grade meningiomas that are resistant to radiotherapy. Integrating single-cell transcriptomics with lineage tracing and imaging approaches across mouse genetic and xenograft models, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. An antibody stabilizing the extracellular negative regulatory region of NOTCH37,8 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival in preclinical models. In summary, our results identify a conserved cell type and signaling mechanism that underlie meningioma tumorigenesis and resistance to radiotherapy, revealing a new therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.

20.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37436963

RESUMEN

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurilemoma , Neuroma Acústico , Humanos , Mutación INDEL , Activación Transcripcional , Neurilemoma/genética , Neurilemoma/patología , Neuroma Acústico/patología , Mutación , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...