RESUMEN
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Asunto(s)
Resistencia a la Insulina , Mitocondrias , Músculo Esquelético , Oxidación-Reducción , Estrés Oxidativo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Insulina/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Compuestos Organofosforados/farmacología , Glucosa/metabolismo , Antioxidantes/farmacología , Adulto , Lípidos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacosRESUMEN
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Asunto(s)
Insulina , Músculo Esquelético , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Especies Reactivas de Oxígeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Insulina/metabolismo , Animales , Estrés OxidativoRESUMEN
Microtubules serve as tracks for long-range intracellular trafficking of glucose transporter 4 (GLUT4), but the role of this process in skeletal muscle and insulin resistance is unclear. Here, we used fixed and live-cell imaging to study microtubule-based GLUT4 trafficking in human and mouse muscle fibers and L6 rat muscle cells. We found GLUT4 localized on the microtubules in mouse and human muscle fibers. Pharmacological microtubule disruption using Nocodazole (Noco) prevented long-range GLUT4 trafficking and depleted GLUT4-enriched structures at microtubule nucleation sites in a fully reversible manner. Using a perifused muscle-on-a-chip system to enable real-time glucose uptake measurements in isolated mouse skeletal muscle fibers, we observed that Noco maximally disrupted the microtubule network after 5 min without affecting insulin-stimulated glucose uptake. In contrast, a 2-hr Noco treatment markedly decreased insulin responsiveness of glucose uptake. Insulin resistance in mouse muscle fibers induced either in vitro by C2 ceramides or in vivo by diet-induced obesity, impaired microtubule-based GLUT4 trafficking. Transient knockdown of the microtubule motor protein kinesin-1 protein KIF5B in L6 muscle cells reduced insulin-stimulated GLUT4 translocation while pharmacological kinesin-1 inhibition in incubated mouse muscles strongly impaired insulin-stimulated glucose uptake. Thus, in adult skeletal muscle fibers, the microtubule network is essential for intramyocellular GLUT4 movement, likely functioning to maintain an insulin-responsive cell surface recruitable GLUT4 pool via kinesin-1-mediated trafficking.
Asunto(s)
Resistencia a la Insulina , Insulina , Adulto , Animales , Humanos , Ratones , Ratas , Glucosa/metabolismo , Insulina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transporte de Proteínas , Transportador de Glucosa de Tipo 4RESUMEN
In mice, exercise is suggested to activate the mechanistic target of rapamycin complex 2 (mTORC2) in skeletal muscle, and mTORC2 is required for normal muscle glucose uptake during exercise. Whether this translates to human skeletal muscle and what signaling pathways facilitate the exercise-induced mTORC2 activation is unknown. We herein tested the hypothesis that exercise increases mTORC2 activity in human skeletal muscle and investigated if ß2-adrenergic receptor (AR) activation mediates exercise-induced mTORC2 activation. We examined several mTORC2 activity readouts (p-NDRG1 Thr346, p-Akt Ser473, p-mTOR S2481, and p-Akt Thr450) in human skeletal muscle biopsies after uphill walking or cycling exercise. In mouse muscles, we assessed mTORC2 activity readouts following acute activation of muscle ß2-adrenergic or GS signaling and during in vivo and ex vivo muscle contractions. Exercise increased phosphorylation of NDRG1 Thr346 in human soleus, gastrocnemius, and vastus lateralis muscle, without changing p-Akt Ser473, p-Akt Thr450, and p-mTOR Ser2481. In mouse muscle, stimulation of ß2-adrenergic or GS signaling and ex vivo contractions failed to increase p-NDRG1 Thr346, whereas in vivo contractions were sufficient to induce p-NDRG1 Thr346. In conclusion, the mTORC2 activity readout p-NDRG1 Thr346 is a novel exercise-responsive signaling protein in human skeletal muscle. Notably, contraction-induced p-NDRG1 Thr346 appears to require a systemic factor. Unlike exercise, and in contrast to published data obtained in cultured muscles cells, stimulation of ß2-adrenergic signaling is not sufficient to trigger NDRG1 phosphorylation in mature mouse skeletal muscle.NEW & NOTEWORTHY The mTORC2 readout p-NDRG Thr346 is a novel exercise-responsive protein in human skeletal muscle. ß2-AR and GS signaling are not sufficient to induce mTORC2 signaling in adult muscle. In vivo, but not ex vivo, contraction induced p-NDRG Thr346, which indicates requirement of a systemic factor for exercise-induced mTORC2 activation.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Caminata/fisiología , Adulto , Animales , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/fisiología , Fosforilación/fisiología , Receptores Adrenérgicos beta 2/metabolismo , Adulto JovenRESUMEN
KEY POINTS: Tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) in mouse does not affect whole-body energy substrate metabolism. AXIN1 imKO does not affect AICAR or insulin-stimulated glucose uptake in adult skeletal muscle. AXIN1 imKO does not affect adult skeletal muscle AMPK or mTORC1 signalling during AICAR/insulin/amino acid incubation, contraction and exercise. During exercise, α2/ß2/γ3AMPK and AMP/ATP ratio show greater increases in AXIN1 imKO than wild-type in gastrocnemius muscle. ABSTRACT: AXIN1 is a scaffold protein known to interact with >20 proteins in signal transduction pathways regulating cellular development and function. Recently, AXIN1 was proposed to assemble a protein complex essential to catabolic-anabolic transition by coordinating AMPK activation and inactivation of mTORC1 and to regulate glucose uptake-stimulation by both AMPK and insulin. To investigate whether AXIN1 is permissive for adult skeletal muscle function, a phenotypic in vivo and ex vivo characterization of tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) mice was conducted. AXIN1 imKO did not influence AMPK/mTORC1 signalling or glucose uptake stimulation at rest or in response to different exercise/contraction protocols, pharmacological AMPK activation, insulin or amino acids stimulation. The only genotypic difference observed was in exercising gastrocnemius muscle, where AXIN1 imKO displayed elevated α2/ß2/γ3 AMPK activity and AMP/ATP ratio compared to wild-type mice. Our work shows that AXIN1 imKO generally does not affect skeletal muscle AMPK/mTORC1 signalling and glucose metabolism, probably due to functional redundancy of its homologue AXIN2.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Axina/genética , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Músculo Esquelético/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida , Animales , Metabolismo Energético , Insulina , Ratones , Ratones Noqueados , Contracción Muscular , Condicionamiento Físico Animal , RibonucleótidosRESUMEN
KEY POINTS: AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α2 -AMPK activity-deficient mice have lower contraction-stimulated protein synthesis. Increasing glycogen activates mTORC1-S6K1. Normalizing muscle glycogen content rescues reduced protein synthesis in AMPK-deficient mice. ABSTRACT: The mechansitic target of rapamycin complex 1 (mTORC1)-S6K1 signalling pathway regulates muscle growth-related protein synthesis and is antagonized by AMP-activated protein kinase (AMPK) in multiple cell types. Resistance exercise stimulates skeletal muscle mTORC1-S6K1 and AMPK signalling and post-contraction protein synthesis. Glycogen inhibits AMPK and has been proposed as a pro-anabolic stimulus. The present study aimed to investigate how muscle mTORC1-S6K1 signalling and protein synthesis respond to resistance exercise-mimicking contraction in the absence of AMPK and with glycogen manipulation. Resistance exercise-mimicking unilateral in situ contraction of musculus quadriceps femoris in anaesthetized wild-type and dominant negative α2 AMPK kinase dead transgenic (KD-AMPK) mice, measuring muscle mTORC1 and AMPK signalling immediately (0 h) and 4 h post-contraction, and protein-synthesis at 4 h. Muscle glycogen manipulation by 5 day oral gavage of the glycogen phosphorylase inhibitor CP316819 and sucrose (80 g L-1 ) in the drinking water prior to in situ contraction. The mTORC1-S6K1 and AMPK signalling axes were coactivated immediately post-contraction, despite potent AMPK-dependent Ser792 phosphorylation on the mTORC1 subunit raptor. KD-AMPK muscles displayed normal mTORC1-S6K1 activation at 0 h and 4 h post-exercise, although there was impaired contraction-stimulated protein synthesis 4 h post-contraction. Pharmacological/dietary elevation of muscle glycogen content augmented contraction-stimulated mTORC1-S6K1-S6 signalling and rescued the reduced protein synthesis-response in KD-AMPK to wild-type levels. mTORC-S6K1 signalling is not influenced by α2 -AMPK during or after intense muscle contraction. Elevated glycogen augments mTORC1-S6K1 signalling. α2 -AMPK-deficient KD-AMPK mice display impaired contraction-induced muscle protein synthesis, which can be rescued by normalizing muscle glycogen content.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucógeno , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucógeno/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Fosforilación , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The small molecule kinase inhibitor SBI-0206965 was originally described as a specific inhibitor of ULK1/2. More recently, it was reported to effectively inhibit AMPK and several studies now report its use as an AMPK inhibitor. Currently, we investigated the specificity of SBI-0206965 in incubated mouse skeletal muscle, measuring the effect on analog 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated AMPK-dependent glucose transport and insulin-stimulated AMPK-independent glucose uptake. Pre-treatment with 10 µM SBI-0206965 for 50 min potently suppressed AICAR-stimulated glucose transport in both the extensor digitorum longus (EDL) and soleus muscle. This was despite only a modest lowering of AICAR-stimulated AMPK activation measured as ACC2 Ser212, while ULK1/2 Ser555 phosphorylation was prevented. Insulin-stimulated glucose transport was also potently inhibited by SBI-0206965 in soleus. No major changes were observed on insulin-stimulated cell signaling. No general effect of SBI-0206965 on intracellular membrane morphology was observed by transmission electron microscopy. As insulin is known to neither activate AMPK nor require AMPK to stimulate glucose transport, and insulin inhibits ULK1/2 activity, these data strongly suggest that SBI-0206965 has a non-specific off-target inhibitory effect on muscle glucose transport. Thus, SBI-0206965 is not a specific inhibitor of the AMPK/ULK-signaling axis in skeletal muscle, and data generated with this inhibitor must be interpreted with caution.