Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1349000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689732

RESUMEN

Recent advancements in reproductive medicine have guided novel strategies for addressing male infertility, particularly in cases of non-obstructive azoospermia (NOA). Two prominent invasive interventions, namely testicular sperm extraction (TESE) and microdissection TESE (micro-TESE), have emerged as key techniques to retrieve gametes for assisted reproduction technologies (ART). Both heterogeneity and complexity of NOA pose a multifaceted challenge to clinicians, as the invasiveness of these procedures and their unpredictable success underscore the need for more precise guidance. Seminal plasma can be aptly regarded as a liquid biopsy of the male reproductive tract, encompassing secretions from the testes, epididymides, seminal vesicles, bulbourethral glands, and prostate. This fluid harbors a variety of cell-free nucleic acids, microvesicles, proteins, and metabolites intricately linked to gonadal activity. However, despite numerous investigations exploring potential biomarkers from seminal fluid, their widespread inclusion into the clinical practice remains limited. This could be partially due to the complex interplay of diverse clinical and genetic factors inherent to NOA that likely contributes to the absence of definitive biomarkers for residual spermatogenesis. It is conceivable that the integration of clinical data with biomarkers could increase the potential in predicting surgical procedure outcomes and their choice in NOA cases. This comprehensive review addresses the challenge of sperm retrieval in NOA through non-invasive biomarkers. Moreover, we delve into promising perspectives, elucidating innovative approaches grounded in multi-omics methodologies, including genomics, transcriptomics and proteomics. These cutting-edge techniques, combined with the clinical and genetics features of patients, could improve the use of biomarkers in personalized medical approaches, patient counseling, and the decision-making continuum. Finally, Artificial intelligence (AI) holds significant potential in the realm of combining biomarkers and clinical data, also in the context of identifying non-invasive biomarkers for sperm retrieval.


Asunto(s)
Azoospermia , Biomarcadores , Recuperación de la Esperma , Humanos , Masculino , Azoospermia/metabolismo , Azoospermia/diagnóstico , Biomarcadores/metabolismo , Biomarcadores/análisis , Infertilidad Masculina/metabolismo , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/terapia , Semen/metabolismo , Espermatogénesis/fisiología
2.
Int J Cancer ; 152(9): 1989-2001, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541726

RESUMEN

isomiRs, the sequence-variants of microRNA, are known to be tissue and cell type specific but their physiological role is largely unknown. In our study, we explored for the first time the expression of isomiRs across different Stage I epithelial ovarian cancer (EOC) histological subtypes, in order to shed new light on their biological role in tumor growth and progression. In a multicentric retrospective cohort of tumor biopsies (n = 215) we sequenced small RNAs finding 971 expressed miRNAs, 64% of which are isomiRs. Among them, 42 isomiRs showed a clear histotype specific pattern, confirming our previously identified miRNA markers (miR192/194 and miR30a-3p/5p for mucinous and clear cell subtypes, respectively) and uncovering new biomarkers for all the five subtypes. Using integrative models, we found that the 38% of these miRNA expression alterations is the result of copy number variations while the 17% of differential transcriptional activities. Our work represents the first attempt to characterize isomiRs expression in Stage I EOC within and across subtypes and to contextualize their alterations in the framework of the large genomic heterogeneity of this tumor.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Epitelial de Ovario/genética , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Perfilación de la Expresión Génica , Neoplasias Ováricas/patología
3.
Genes Genomics ; 45(5): 637-655, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36454368

RESUMEN

BACKGROUND: Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE: To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS: We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS: Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION: This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.


Asunto(s)
Pruebas Genéticas , Secuenciación del Exoma , Fenotipo , Estudios de Asociación Genética
4.
Diagnostics (Basel) ; 12(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36553114

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.

5.
Eur J Cancer ; 171: 85-95, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714451

RESUMEN

BACKGROUND: Stage I epithelial ovarian cancer (EOC) encompasses five histologically different subtypes of tumors confined to the ovaries with a generally favorable prognosis. Despite the intrinsic heterogeneity, all stage I EOCs are treated with complete resection and adjuvant therapy in most of the cases. Owing to the lack of robust prognostic markers, this often leads to overtreatment. Therefore, a better molecular characterization of stage I EOCs could improve the assessment of the risk of relapse and the refinement of optimal treatment options. MATERIALS AND METHODS: 205 stage I EOCs tumor biopsies with a median follow-up of eight years were gathered from two independent Italian tumor tissue collections, and the genome distribution of somatic copy number alterations (SCNAs) was investigated by shallow whole genome sequencing (sWGS) approach. RESULTS: Despite the variability in SCNAs distribution both across and within the histotypes, we were able to define three common genomic instability patterns, namely stable, unstable, and highly unstable. These patterns were based on the percentage of the genome affected by SCNAs and on their length. The genomic instability pattern was strongly predictive of patients' prognosis also with multivariate models including currently used clinico-pathological variables. CONCLUSIONS: The results obtained in this study support the idea that novel molecular markers, in this case genomic instability patterns, can anticipate the behavior of stage I EOC regardless of tumor subtype and provide valuable prognostic information. Thus, it might be propitious to extend the study of these genomic instability patterns to improve rational management of this disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/genética , Femenino , Inestabilidad Genómica , Genómica , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Pronóstico
6.
Breast ; 59: 94-101, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34217971

RESUMEN

BACKGROUND: We report here for the first time, a comprehensive characterization of biological and clinical features of early-stage triple negative Invasive Lobular Carcinomas(TN-ILCs) METHODS: We analyzed all consecutive patients with early-stage TN-ILC operated at two reference cancer-centers between 1994 and 2012. Primary objective was to assess the invasive disease-free survival(iDFS). Co-primary objective was to assess biological features of TN-ILCs, including molecular intrinsic subtypes based on PAM-50 assay, expression of androgen receptor (AR) and mutational status of ERBB2-gene. Additionally, DNA mutational status of an independent cohort of 45 TN-ILCs from three databases were analyzed, to confirm mutations in ERBB2-gene and to identify other recurrently mutated genes. RESULTS: Among 4152 ILCs, 74(1.8%) were TN and were analyzed. The iDFS at 5 and 10 years of FUP were 50.4%(95%CI,38.0-61.6) and 37.2%(95%CI,25.5-48.8), respectively. The molecular subtype was defined through PAM50-classifier for 31 out of 74 TN-ILCs: 48% were Luminal-A(15/31), 3% luminal-B(1/31), 32% HER2-enriched (10/31), and only 16% basal-like(5/31). Luminal tumors expressed AR more frequently than non-luminal tumors (AR≥1% in 94% of luminal tumors versus 53% in non-luminal tumors; p-value = 0.001). 20% of TN-ILCs analyzed(7/35), harbored a pathogenetic and actionable mutation in the ERBB2-gene. Analysis of the independent cohort of 45 TN-ILCs from three different databases, confirmed similar percentage of pathogenetic and actionable mutations in ERBB2-gene(20%; 9/45). Among the top 10 molecular pathways significantly enriched for recurrently mutated genes in TN-ILCs(FDR<0.05), there were ErbB-signaling and DNA-damage-response pathways. CONCLUSIONS: TN-ILCs are rare tumors with poor prognosis. Their specific biological features require newly defined targeted therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Biomarcadores de Tumor/genética , Mama , Neoplasias de la Mama/genética , Carcinoma Lobular/genética , Femenino , Humanos , Pronóstico , Receptor ErbB-2/genética
7.
JAMA Netw Open ; 3(7): e207566, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609349

RESUMEN

Importance: The low 5-year survival rate of women with high-grade serous epithelial ovarian cancer (HGS-EOC) is related to its late diagnosis; thus, improvement in diagnosis constitutes a crucial step to increase the curability of this disease. Objective: To determine whether the presence of the clonal pathogenic TP53 variant detected in matched primary tumor biopsies can be identified in DNA purified from Papanicolaou test samples collected from women with HGS-EOC years before the diagnosis. Design, Setting, and Participants: This cohort study was conducted among a single-center cohort of women with histologically confirmed diagnosis of HGS-EOC recruited at San Gerardo Hospital, Monza, Italy, from October 15, 2015, to January 4, 2019. Serial dilutions of DNA derived from tumor samples and DNA extracted from healthy women's Papanicolaou test samples were analyzed to define the sensitivity and specificity of droplet digital polymerase chain reaction assays designed to detect the TP53 variants identified in tumors. All available brush-based Papanicolaou test slides performed up to 6 years before diagnosis were investigated at the Mario Negri Institute, Milano, Italy. Data were analyzed from October 2018 to December 2019. Main Outcomes and Measures: The presence of tumor pathogenic TP53 variants was assessed by the droplet digital polymerase chain reaction approach in DNA purified from Papanicolaou test samples obtained from the same patients before diagnosis during cervical cancer screenings. Results: Among 17 included patients (median [interquartile range] age at diagnosis, 60 [53-69] years), Papanicolaou tests withdrawn before diagnosis presented tumor-matched TP53 variants in 11 patients (64%). In 2 patients for whom longitudinal Papanicolaou tests were available, including 1 patient with Papanicolaou tests from 25 and 49 months before diagnosis and 1 patient with Papanicolaou tests from 27 and 68 months before diagnosis, the TP53 clonal variant was detected at all time points. Conclusions and Relevance: These findings suggest that noninvasive early molecular diagnosis of HGS-EOC is potentially achievable through detection of TP53 clonal variants in the DNA purified from Papanicolaou tests performed during cervical cancer screening.


Asunto(s)
Carcinoma Epitelial de Ovario , Células Clonales/patología , Cistadenocarcinoma Seroso , Detección Precoz del Cáncer/métodos , Neoplasias Ováricas , Prueba de Papanicolaou , Proteína p53 Supresora de Tumor/análisis , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Prueba de Papanicolaou/métodos , Prueba de Papanicolaou/estadística & datos numéricos , Sensibilidad y Especificidad , Factores de Tiempo
8.
Cancers (Basel) ; 12(4)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276467

RESUMEN

Previous studies on breast and ovarian carcinoma (BC and OC) revealed constitutional BRCA1 and RAD51C promoter hypermethylation as epigenetic alterations leading to tumor predisposition. Nevertheless, the impact of epimutations at these genes is still debated. One hundred and eight women affected by BC, OC, or both and considered at very high risk of carrying BRCA1 germline mutations were studied. All samples were negative for pathogenic variants or variants of uncertain significance at BRCA testing. Quantitative BRCA1 and RAD51C promoter methylation analyses were performed by Epityper mass spectrometry on peripheral blood samples and results were compared with those in controls. All the 108 analyzed cases showed methylation levels at the BRCA1/RAD51C promoter comparable with controls. Mean methylation levels (± stdev) at the BRCA1 promoter were 4.3% (± 1.4%) and 4.4% (± 1.4%) in controls and patients, respectively (p > 0.05; t-test); mean methylation levels (± stdev) at the RAD51C promoter were 4.3% (± 0.9%) and 3.7% (± 0.9%) in controls and patients, respectively (p > 0.05; t-test). Based on these observations; the analysis of constitutional methylation at promoters of these genes does not seem to substantially improve the definition of cancer risks in patients. These data support the idea that epimutations represent a very rare event in high-risk BC/OC populations.

9.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098071

RESUMEN

Mismatch repair (MMR) analysis in breast cancer may help to inform immunotherapy decisions but it lacks breast-specific guidelines. Unlike in other neoplasms, MMR protein loss shows intra-tumor heterogeneity and it is not mirrored by microsatellite instability in the breast. Additional biomarkers can improve MMR clinical testing. Phosphatase and tensin homolog (PTEN) inactivation is an early oncogenic event that is associated with MMR deficiency (dMMR) in several tumors. Here, we sought to characterize the diagnostic utility of PTEN expression analysis for MMR status assessment in breast cancer. A total of 608 breast cancers were profiled for their MMR and PTEN status. Proteins expression and distribution were analyzed by immunohistochemistry (IHC) on tissue microarrays and confirmed on full sections; PTEN copy number alterations were detected using a real-time PCR assay. Overall, 78 (12.8%) cases were MMR-heterogeneous (hMMR), while all patterns of PTEN expression showed no intra-tumor heterogeneity. Wild-type PTEN expression was observed in 15 (18.5%) dMMR tumors (p < 0.0001). Survival analyses revealed significant correlations between MMR-proficient (pMMR), PTEN expression, and a better outcome. The positive predictive value of PTEN-retained status for pMMR ranged from 94.6% in estrogen receptor (ER)+/HER2- tumors to 100% in HER2-amplified and ER-/HER2- cases. We propose a novel diagnostic algorithm where PTEN expression analysis can be employed to identify pMMR breast cancers.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama , Reparación de la Incompatibilidad de ADN , Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Tasa de Supervivencia
10.
Stem Cells Int ; 2019: 2617030, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984267

RESUMEN

Glioblastoma (GBM) is the most malignant human brain tumour, characterized by rapid progression, invasion, intense angiogenesis, high genomic instability, and resistance to therapies. Despite countless experimental researches for new therapeutic strategies and promising clinical trials, the prognosis remains extremely poor, with a mean survival of less than 14 months. GBM aggressive behaviour is due to a subpopulation of tumourigenic stem-like cells, GBM stem cells (GSCs), which hierarchically drive onset, proliferation, and tumour recurrence. The morbidity and mortality of this disease strongly encourage exploring genetic characteristics of GSCs. Here, using array-CGH platform, we investigated genetic and genomic aberration profiles of GBM parent tumour (n = 10) and their primarily derived GSCs. Statistical analysis was performed by using R software and complex heatmap and corrplot packages. Pearson correlation and K-means algorithm were exploited to compare genetic alterations and to group similar genetic profiles in matched pairs of GBM and derived GSCs. We identified, in both GBM and matched GSCs, recurrent copy number alterations, as chromosome 7 polysomy, chromosome 10 monosomy, and chromosome 9p21deletions, which are typical features of primary GBM, essential for gliomagenesis. These observations suggest a condition of strong genomic instability both in GBM as GSCs. Our findings showed the robust similarity between GBM mass and GSCs (Pearson corr.≥0.65) but also highlighted a marked variability among different patients. Indeed, the heatmap reporting Gain/Loss State for 21022 coding/noncoding genes demonstrated high interpatient divergence. Furthermore, K-means algorithm identified an impairment of pathways related to the development and progression of cancer, such as angiogenesis, as well as pathways related to the immune system regulation, such as T cell activation. Our data confirmed the preservation of the genomic landscape from tumour tissue to GSCs, supporting the relevance of this cellular model to test in vitro new target therapies for GBM.

11.
Cancers (Basel) ; 11(1)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634417

RESUMEN

Early age at onset of breast cancer (eoBC) is suggestive of an increased genetic risk. Although genetic testing is offered to all eoBC-affected women, in isolated cases the detection rate of pathogenic variants is <10%. This study aimed at assessing the role of constitutive promoter methylation at BC-associated loci as an underlying predisposing event in women with eoBC and negative family history. Promoter methylation at 12 loci was assessed by the MassARRAY technology in blood from 154 BRCA1/2 negative patients with eoBC and negative family history, and 60 healthy controls. Hypermethylation was determined, within each promoter, by comparing the patient's mean methylation value with thresholds based on one-sided 95% bootstrap confidence interval of the controls' mean. Three patients had hypermethylated results, two at BRCA1 and one at RAD51C. Analyses on tumor tissue from the patient exceeding the highest threshold at BRCA1 revealed a mean methylation >60% and loss of heterozygosity at chromosome 17q. The patient hypermethylated at RAD51C showed low methylation in the tumor sample, ruling out a role for methylation-induced silencing in tumor development. In isolated eoBC patients, BRCA1 constitutive promoter methylation may be a predisposing event. Further studies are required to define the impact of methylation changes occurring at BC-predisposing genes and their role in tumorigenesis.

12.
Thyroid ; 29(2): 237-251, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30501571

RESUMEN

BACKGROUND: The need to integrate the classification of cancer with information on the genetic pattern has emerged in recent years for several tumors. METHODS: The genomic background of a large series of 208 papillary thyroid cancers (PTC) followed at a single center was analyzed by a custom MassARRAY genotyping platform, which allows the simultaneous detection of 19 common genetic alterations, including point mutations and fusions. RESULTS: Of the PTCs investigated, 71% were found to have pathognomonic genetic findings, with BRAFV600E and TERT promoter mutations being the most frequent monoallelic alterations (42% and 23.5%, respectively), followed by RET/PTC fusions. In 19.2% of cases, two or more point mutations were found, and the co-occurrence of a fusion with one or more point mutation(s) was also observed. Coexisting BRAFV600E and TERT promoter mutations were detected in a subgroup of aggressive PTCs (12%). A correlation between several aggressive features and mutation density was found, regardless of the type of association (i.e., only point mutations, or point mutations and fusions). Importantly, Kaplan-Meier curves demonstrated that mutation density significantly correlated with a higher risk of persistent disease. In most cases, the evaluation of the allelic frequencies normalized for the cancer cell content indicated the presence of the monoallelic mutation in virtually all tumor cells. A minority of cases was found to harbor low allelic frequencies, consistent with the presence of the mutations in a small subset of cancer cells, thus indicating tumor heterogeneity. Consistently, the presence of coexisting genetic alterations with different allelic frequencies in some tumors suggests that PTC can be formed by clones/subclones with different mutational profiles. CONCLUSIONS: A large mono-institutional series of PTCs was fully genotyped by means of a cost- and time-effective customized panel, revealing a strong impact of mutation density and genetic heterogeneity on the clinical features and on disease outcomes, indicating that an accurate risk stratification of thyroid cancer cannot rely on the analysis of a single genetic event. Finally, the heterogeneity found in some tumors warrants attention, since the occurrence of this phenomenon is likely to affect response to targeted therapies.


Asunto(s)
Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/genética , Telomerasa/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Adulto , Alelos , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Fusión Oncogénica/genética , Probabilidad , Regiones Promotoras Genéticas , Proteínas Tirosina Quinasas/genética , Inducción de Remisión , Medición de Riesgo , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/terapia , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/terapia
13.
Am J Med Genet A ; 176(6): 1427-1431, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29663667

RESUMEN

Gillespie syndrome (GLSP) is a rare congenital disorder characterized by partial aniridia, hypotonia, progressive cerebellar hypoplasia, nonprogressive ataxia, and intellectual disability. All causative variants to date affect the central or the 3'-terminal domains of ITPR1 gene and exhibit autosomal recessive or dominant inheritance pattern. We investigated by exome sequencing the molecular cause of GLSP in a family composed by consanguineous healthy parents, two affected siblings and one healthy son. We found the novel splice site variant c.278_279 + 2delACGT located at the 5'-end of ITPR1. The affected siblings were homozygotes, their parents heterozygous carriers and the variant was absent in the healthy son, indicating a recessive inheritance pattern. The deletion abolished the splice-donor site at exon 5/intron 5 junction, causing the skipping of exon 5 and the generation of a premature STOP codon. The mutation is predicted to result in the synthesis of a 64-amino acids nonfunctional protein. The mutant transcript comprised >96% of ITPR1 mRNA in the affected siblings, indicating that a small amount of wild-type transcript was still present. The novel autosomal recessive mutation here reported is the first variant affecting the ITPR1 N-terminal suppressor domain, thus extending the spectrum of the pathogenetic variants in GLSP and the range of the associated clinical manifestations.


Asunto(s)
Aniridia/genética , Ataxia Cerebelosa/genética , Mutación del Sistema de Lectura , Receptores de Inositol 1,4,5-Trifosfato/genética , Discapacidad Intelectual/genética , Sitios de Empalme de ARN/genética , Adolescente , Aniridia/etiología , Ataxia Cerebelosa/etiología , Niño , Codón sin Sentido , Exones , Femenino , Genes Recesivos , Homocigoto , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Discapacidad Intelectual/etiología , Masculino , Linaje , Dominios Proteicos
14.
Diagn Pathol ; 13(1): 4, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29368620

RESUMEN

BACKGROUND: Identification of predictive molecular alterations in lung adenocarcinoma is essential for accurate therapeutic decisions. Although several molecular approaches are available, a number of issues, including tumor heterogeneity, frequent material scarcity, and the large number of loci to be investigated, must be taken into account in selecting the most appropriate technique. MALDI-TOF mass spectrometry (MS), which allows multiplexed genotyping, has been adopted in routine diagnostics as a sensitive, reliable, fast, and cost-effective method. Our aim was to test the reliability of this approach in detecting targetable mutations in non-small cell lung cancer (NSCLC). In addition, we also analyzed low-quality samples, such as cytologic specimens, that often, are the unique source of starting material in lung cancer cases, to test the sensitivity of the system. METHODS: We designed a MS-based assay for testing 158 mutations in the EGFR, KRAS, BRAF, ALK, PIK3CA, ERBB2, DDR2, AKT, and MEK1 genes and applied it to 92 NSCLC specimens and 13 liquid biopsies from another subset of NSCLC patients. We also tested the sensitivity of the method to distinguish low represented mutations using serial dilutions of mutated DNA. RESULTS: Our panel is able to detect the most common NSCLC mutations and the frequency of the mutations observed in our cohort was comparable to literature data. The assay identifies mutated alleles at frequencies of 2.5-10%. In addition, we found that the amount of DNA template was irrelevant to efficiently uncover mutated alleles present at high frequency. However, when using less than 10 ng of DNA, the assay can detect mutations present in at least 10% of the alleles. Finally, using MS and a commercial kit for RT-PCR we tested liquid biopsy from 13 patients with identified mutations in cancers and detected the mutations in 4 (MS) and in 5 samples (RT-PCR). CONCLUSIONS: MS is a powerful method for the routine predictive tests of lung cancer also using low quality and scant tissues. Finally, after appropriate validation and improvement, MS could represent a promising and cost-effective strategy for monitoring the presence and percentage of the mutations also in non-invasive sampling.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Humanos , Neoplasias Pulmonares/diagnóstico
15.
JNCI Cancer Spectr ; 2(4): pky056, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31360876

RESUMEN

BACKGROUND: Breast cancers that harbor mismatch-repair (MMR) deficiency and/or microsatellite instability (MSI) might be sensitive to immune checkpoint blockade, but there are currently no specific guidelines for assessing MMR status in breast cancer. Here, we sought to define the clinical value of MMR immunohistochemistry (IHC) and MSI analysis in breast cancers. METHODS: We subjected 444 breast cancers to MMR IHC and MSI analysis. Cases were classified as MMR-proficient (pMMR), MMR-deficient (dMMR), and MMR-heterogeneous (hMMR) based on the loss of immunoreactivity; MSI was defined by instability in the five indicators recommended by the National Cancer Institute for endometrial and colorectal cancers. Correlation of MMR status with patients' survival was assessed using the Kaplan-Meier estimator. Statistical tests were two-sided. RESULTS: Loss of MMR proteins was homogeneous (dMMR) in 75 patients (17%) and heterogeneous (hMMR) in 55 (12%). Among luminal breast cancers, there were similar frequencies of dMMR and hMMR tumors. Overall, the rate of discrepancy between IHC and MSI analysis was high (91%). Women with Luminal B-like dMMR carcinomas (n = 44) showed shorter overall survival (median = 77 months, range = 0-115 months) than those with pMMR (n = 205) or hMMR (n = 35) tumors (median = 84 months, range = 0-127 months) (P = .008). On the contrary, patients with estrogen receptor-negative breast cancers treated with chemotherapy lived longer in cases of dMMR (n = 9) than pMMR (n = 33) or hMMR (n = 7) tumors, with 87 months of median survival (range = 73-123 months) for the former compared with 79 months (range = 8-113 months) for the latter two categories (P < .001). CONCLUSIONS: Immunohistochemistry and MSI are not interchangeable tests in breast carcinomas. MMR protein loss is a more common event than MSI and shows intra-tumor heterogeneity. MMR IHC allows the identification of clinically relevant subclasses of breast cancer patients, provided that multiple areas of the tumor are analyzed.

16.
Endocrine ; 61(1): 36-41, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29214440

RESUMEN

PURPOSE: We exploited the MassARRAY (MA) genotyping platform to develop the "PTC-MA assay", which allows the simultaneous detection of 13 hotspot mutations, in the BRAF, KRAS, NRAS, HRAS, TERT, AKT1, PIK3CA, and EIF1AX genes, and six recurrent genetic rearrangements, involving the RET and TRK genes in papillary thyroid cancer (PTC). METHODS: The assay was developed using DNA and cDNA from 12 frozen and 11 formalin-fixed paraffin embedded samples from 23 PTC cases, together with positive and negative controls. RESULTS: The PTC-MA assay displays high sensitivity towards point mutations and gene rearrangements, detecting their presence at frequencies as low as 5%. Moreover, this technique allows quantification of the mutated alleles identified at each tested locus. CONCLUSIONS: The PTC-MA assay is a novel MA test, which is able to detect fusion genes generated by genomic rearrangements concomitantly with the analysis of hotspot point mutations, thus allowing the evaluation of key diagnostic, prognostic, and therapeutic markers of PTC in a single experiment without any informatics analysis. As the assay is sensitive, robust, easily achievable, and affordable, it is suitable for the diagnostic practice. Finally, the PTC-MA assay can be easily implemented and updated by adding novel genetic markers, according to clinical requirements.


Asunto(s)
Fusión Génica/genética , Mutación/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , ADN de Neoplasias/genética , Femenino , Reordenamiento Génico/genética , Humanos , Masculino , Espectrometría de Masas , Análisis por Micromatrices , Persona de Mediana Edad , Adhesión en Parafina , Mutación Puntual/genética , Adulto Joven
17.
Med Oncol ; 35(1): 2, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29209838

RESUMEN

Brain metastases from NSCLC are associated with a poor prognosis, and local radiotherapy is the most effective therapeutic strategy. The oncofetal protein IMP3 has been studied extensively, and evidence suggests that its expression is related to shorter overall survival and a more aggressive phenotype in solid malignancies. Here, the prognostic role of IMP3 was investigated in a cohort of patients with NSCLC brain metastases in correlation with survival and tumor histotype. A series of 42 NSCLC brain metastases samples was analyzed by tissue microarray and immunohistochemical staining for IMP3. IMP3 expression was associated with shorter overall survival in the whole series and in subgroups of metastases from non-neuroendocrine pulmonary malignancies and adenocarcinoma metastases. These results indicated that IMP3 is a strong prognostic factor in non-neuroendocrine brain metastases and in particular in patients with adenocarcinoma metastases.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas de Unión al ARN/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Análisis de Supervivencia
18.
Oncotarget ; 8(34): 57134-57148, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915660

RESUMEN

The World Health Organization recently revised the diagnosis of glioma, to integrate molecular parameters, including IDH mutations and codeletion (loss of heterozygosity; LOH) of chromosome arms 1p/19q, into the definitions of adult glioma histological subtypes. Mutations in the TERT promoter may also be useful for glioma diagnosis and prognosis. The integration of molecular markers into routine diagnosis requires their rapid and reliable assessment. We propose a MassARRAY (MS)-based test that can identify 1p/19q codeletion using quantitative SNP genotyping and, simultaneously, characterize hotspot mutations in the IDH1, IDH2, and TERT genes in tumor DNA. We determined the reliability of the MS approach testing 50 gliomas and comparing the MS results with those obtained by standard methods, such as short tandem repeat genotyping, array comparative genomic hybridization (array-CGH) and Fluorescence In Situ Hybridization (FISH) for 1p/19q codeletion and Sanger sequencing for hotspots mutations. The results indicate that MS is suitable for the accurate, rapid, and cost-effective evaluation of chromosome deletions combined with hotspot mutation detection. This MS approach could be similarly exploited in evaluation of LOH in other situations of clinical and/or research importance.

19.
PLoS One ; 12(2): e0171663, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28199346

RESUMEN

In BRCA1/2 families, early-onset breast cancer (BrCa) cases may be also observed among non-carrier relatives. These women are considered phenocopies and raise difficult counselling issues concerning the selection of the index case and the residual risks estimate in negative family members. Few studies investigated the presence of potential genetic susceptibility factors in phenocopies, mainly focussing on BrCa-associated single-nucleotide polymorphisms. We hypothesized that, as for other Mendelian diseases, a revertant somatic mosaicism, resulting from spontaneous correction of a pathogenic mutation, might occur also in BRCA pedigrees. A putative low-level mosaicism in phenocopies, which has never been investigated, might be the causal factor undetected by standard diagnostic testing. We selected 16 non-carriers BrCa-affected from 15 BRCA1/2 families, and investigated the presence of mosaicism through MALDI-TOF mass spectrometry. The analyses were performed on available tumour samples (7 cases), blood leukocytes, buccal mucosa and urine samples (2 cases) or on blood only (7 cases). In one family (n.8), real-time PCR was also performed to analyse the phenocopy and her healthy parents. On the 16 phenocopies we did not detect the family mutations neither in the tumour, expected to display the highest mutation frequency, nor in the other analysed tissues. In family 8, all the genotyping assays did not detect mosaicism in the phenocopy or her healthy parents, supporting the hypothesis of a de novo occurrence of the BRCA2 mutation identified in the proband. These results suggest that somatic mosaicism is not likely to be a common phenomenon in BRCA1/2 families. As our families fulfilled high-risk selection criteria, other genetic factors might be responsible for most of these cases and have a significant impact on risk assessment in BRCA1/2 families. Finally, we found a de novo BRCA2 mutation, suggesting that, although rare, this event should be taken into account in the evaluation of high-risk families.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Mosaicismo , Adulto , Neoplasias de la Mama/diagnóstico , ADN/análisis , ADN/aislamiento & purificación , ADN/metabolismo , Tumor del Seno Endodérmico/diagnóstico , Tumor del Seno Endodérmico/genética , Femenino , Pruebas Genéticas , Genotipo , Humanos , Persona de Mediana Edad , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Adulto Joven
20.
Cell Cycle ; 15(21): 2906-2919, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27565373

RESUMEN

Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , Cromosomas Fúngicos/metabolismo , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenoviridae/metabolismo , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Reordenamiento Génico , Inestabilidad Genómica , Viabilidad Microbiana , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas de Saccharomyces cerevisiae/química , Polos del Huso/metabolismo , Telómero/metabolismo , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA