Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 9(1): 70, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853668

RESUMEN

Huntington's disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in a disease stage and polyglutamine-length dependent manner. We successfully adapted a high-resolution correlative light and electron microscopy methodology, originally developed for mammalian and yeast cells, to allow us to correlate light microscopy and electron microscopy images on the same brain section within an accuracy of 100 nm. Using this approach, we identified these recruitment sites as single membrane bound, vesicle-rich endolysosomal organelles, specifically as (1) multivesicular bodies (MVBs), or amphisomes and (2) autolysosomes or residual bodies. The organelles were often found in close-proximity to phagophore-like structures. Immunogold labeling localized mutant HTT to non-fibrillar, electron lucent structures within the lumen of these organelles. In presymptomatic HD, the recruitment organelles were predominantly MVBs/amphisomes, whereas in late-stage HD, there were more autolysosomes or residual bodies. Electron tomograms indicated the fusion of small vesicles with the vacuole within the lumen, suggesting that MVBs develop into residual bodies. We found that markers of MVB-related exocytosis were depleted in presymptomatic mice and throughout the disease course. This suggests that endolysosomal homeostasis has moved away from exocytosis toward lysosome fusion and degradation, in response to the need to clear the chronically aggregating mutant HTT protein, and that this occurs at an early stage in HD pathogenesis.


Asunto(s)
Endosomas/patología , Enfermedad de Huntington/patología , Cuerpos de Inclusión/ultraestructura , Lisosomas/patología , Neuronas/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Endosomas/metabolismo , Endosomas/ultraestructura , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación , Neuronas/metabolismo , Neuronas/ultraestructura
2.
Mol Cell ; 70(4): 588-601.e6, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754822

RESUMEN

Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.


Asunto(s)
Proteína Huntingtina/química , Enfermedad de Huntington/patología , Péptidos/química , Transición de Fase , Agregación Patológica de Proteínas/patología , Exones , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Péptidos/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Saccharomyces cerevisiae
3.
J Phys Chem Lett ; 3(21): 3176-81, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26296025

RESUMEN

We report the discovery of new polymorphic forms of solids by exploiting a solid-state NMR technique that has been developed for in situ monitoring of the evolution of crystallization processes. The capability of the technique to reveal the existence of new polymorphic forms of molecular solids is illustrated by the discovery of two new polymorphs of methyldiphenylphosphine oxide and a new solid form of the 1,10-dihydroxydecane/urea system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...