Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 8(7): bvae100, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38831864

RESUMEN

Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the ß-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates ß-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and ß-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of ß-cell mass, and measurements of ß-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.

2.
J Pharmacol Exp Ther ; 386(2): 169-180, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36918276

RESUMEN

Type 2 diabetes (T2D) is a rising pandemic worldwide. Diet and lifestyle changes are typically the first intervention for T2D. When this intervention fails, the biguanide metformin is the most common pharmaceutical therapy. Yet its full mechanisms of action remain unknown. In this work, we applied an ultrahigh resolution, mass spectrometry-based platform for untargeted plasma metabolomics to human plasma samples from a case-control observational study of nondiabetic and well-controlled T2D subjects, the latter treated conservatively with metformin or diet and lifestyle changes only. No statistically significant differences existed in baseline demographic parameters, glucose control, or clinical markers of cardiovascular disease risk between the two T2D groups, which we hypothesized would allow the identification of circulating metabolites independently associated with treatment modality. Over 3000 blank-reduced metabolic features were detected, with the majority of annotated features being lipids or lipid-like molecules. Altered abundance of multiple fatty acids and phospholipids were found in T2D subjects treated with diet and lifestyle changes as compared with nondiabetic subjects, changes that were often reversed by metformin. Our findings provide direct evidence that metformin monotherapy alters the human plasma lipidome independent of T2D disease control and support a potential cardioprotective effect of metformin worthy of future study. SIGNIFICANCE STATEMENT: This work provides important new information on the systemic effects of metformin in type 2 diabetic subjects. We observed significant changes in the plasma lipidome with metformin therapy, with metabolite classes previously associated with cardiovascular disease risk significantly reduced as compared to diet and lifestyle changes. While cardiovascular disease risk was not a primary outcome of our study, our results provide a jumping-off point for future work into the cardioprotective effects of metformin, even in well-controlled type 2 diabetes.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Lipidómica , Control Glucémico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/tratamiento farmacológico , Preparaciones Farmacéuticas , Biomarcadores , Glucemia/metabolismo
3.
Metabolites ; 12(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557272

RESUMEN

Over half of patients with type 2 diabetes (T2D) are unable to achieve blood glucose targets despite therapeutic compliance, significantly increasing their risk of long-term complications. Discovering ways to identify and properly treat these individuals is a critical problem in the field. The arachidonic acid metabolite, prostaglandin E2 (PGE2), has shown great promise as a biomarker of ß-cell dysfunction in T2D. PGE2 synthesis, secretion, and downstream signaling are all upregulated in pancreatic islets isolated from T2D mice and human organ donors. In these islets, preventing ß-cell PGE2 signaling via a prostaglandin EP3 receptor antagonist significantly improves their glucose-stimulated and hormone-potentiated insulin secretion response. In this clinical cohort study, 167 participants, 35 non-diabetic, and 132 with T2D, were recruited from the University of Wisconsin Hospital and Clinics. At enrollment, a standard set of demographic, biometric, and clinical measurements were performed to quantify obesity status and glucose control. C reactive protein was measured to exclude acute inflammation/illness, and white cell count (WBC), erythrocyte sedimentation rate (ESR), and fasting triglycerides were used as markers of systemic inflammation. Finally, a plasma sample for research was used to determine circulating PGE2 metabolite (PGEM) levels. At baseline, PGEM levels were not correlated with WBC and triglycerides, only weakly correlated with ESR, and were the strongest predictor of T2D disease status. One year after enrollment, blood glucose management was assessed by chart review, with a clinically-relevant change in hemoglobin A1c (HbA1c) defined as ≥0.5%. PGEM levels were strongly predictive of therapeutic response, independent of age, obesity, glucose control, and systemic inflammation at enrollment. Our results provide strong support for future research in this area.

4.
ACS Pharmacol Transl Sci ; 4(4): 1338-1348, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423270

RESUMEN

Elevated islet production of prostaglandin E2 (PGE2), an arachidonic acid metabolite, and expression of prostaglandin E2 receptor subtype EP3 (EP3) are well-known contributors to the ß-cell dysfunction of type 2 diabetes (T2D). Yet, many of the same pathophysiological conditions exist in obesity, and little is known about how the PGE2 production and signaling pathway influences nondiabetic ß-cell function. In this work, plasma arachidonic acid and PGE2 metabolite levels were quantified in a cohort of nondiabetic and T2D human subjects to identify their relationship with glycemic control, obesity, and systemic inflammation. In order to link these findings to processes happening at the islet level, cadaveric human islets were subject to gene expression and functional assays. Interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA levels, but not those of EP3, positively correlated with donor body mass index (BMI). IL-6 expression also strongly correlated with the expression of COX-2 and other PGE2 synthetic pathway genes. Insulin secretion assays using an EP3-specific antagonist confirmed functionally relevant upregulation of PGE2 production. Yet, islets from obese donors were not dysfunctional, secreting just as much insulin in basal and stimulatory conditions as those from nonobese donors as a percent of content. Islet insulin content, on the other hand, was increased with both donor BMI and islet COX-2 expression, while EP3 expression was unaffected. We conclude that upregulated islet PGE2 production may be part of the ß-cell adaption response to obesity and insulin resistance that only becomes dysfunctional when both ligand and receptor are highly expressed in T2D.

5.
Am J Physiol Endocrinol Metab ; 321(4): E479-E489, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229444

RESUMEN

When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their ß-cell dysfunction. In this work, we aimed to test the impact of ß-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in ß-cell fractional area or markers of ß-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to ß-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating ß-cell-specific knockouts.


Asunto(s)
Glucemia/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/patología , Insulina/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/fisiología , Animales , Femenino , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Ratas
6.
J Biol Chem ; 296: 100056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33172888

RESUMEN

The inhibitory G protein alpha-subunit (Gαz) is an important modulator of beta-cell function. Full-body Gαz-null mice are protected from hyperglycemia and glucose intolerance after long-term high-fat diet (HFD) feeding. In this study, at a time point in the feeding regimen where WT mice are only mildly glucose intolerant, transcriptomics analyses reveal islets from HFD-fed Gαz KO mice have a dramatically altered gene expression pattern as compared with WT HFD-fed mice, with entire gene pathways not only being more strongly upregulated or downregulated versus control-diet fed groups but actually reversed in direction. Genes involved in the "pancreatic secretion" pathway are the most strongly differentially regulated: a finding that correlates with enhanced islet insulin secretion and decreased glucagon secretion at the study end. The protection of Gαz-null mice from HFD-induced diabetes is beta-cell autonomous, as beta cell-specific Gαz-null mice phenocopy the full-body KOs. The glucose-stimulated and incretin-potentiated insulin secretion response of islets from HFD-fed beta cell-specific Gαz-null mice is significantly improved as compared with islets from HFD-fed WT controls, which, along with no impact of Gαz loss or HFD feeding on beta-cell proliferation or surrogates of beta-cell mass, supports a secretion-specific mechanism. Gαz is coupled to the prostaglandin EP3 receptor in pancreatic beta cells. We confirm the EP3γ splice variant has both constitutive and agonist-sensitive activity to inhibit cAMP production and downstream beta-cell function, with both activities being dependent on the presence of beta-cell Gαz.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Células Secretoras de Insulina/patología , Obesidad/complicaciones , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/etiología , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP/genética , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Sci Rep ; 8(1): 17814, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546031

RESUMEN

Type 2 diabetes is an age-and-obesity associated disease driven by impairments in glucose homeostasis that ultimately result in defective insulin secretion from pancreatic ß-cells. To deconvolve the effects of age and obesity in an experimental model of prediabetes, we fed young and aged mice either chow or a short-term high-fat/high-sucrose Western diet (WD) and examined how weight, glucose tolerance, and ß-cell function were affected. Although WD induced a similar degree of weight gain in young and aged mice, a high degree of heterogeneity was found exclusively in aged mice. Weight gain in WD-fed aged mice was well-correlated with glucose intolerance, fasting insulin, and in vivo glucose-stimulated insulin secretion, relationships that were not observed in young animals. Although ß-cell mass expansion in the WD-fed aged mice was only three-quarters of that observed in young mice, the islets from aged mice were resistant to the sharp WD-induced decline in ex vivo insulin secretion observed in young mice. Our findings demonstrate that age is associated with the protection of islet function in diet-induced obese mice, and furthermore, that WD challenge exposes variability in the resilience of the insulin secretory pathway in aged mice.


Asunto(s)
Envejecimiento/metabolismo , Dieta Occidental/efectos adversos , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Envejecimiento/patología , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/prevención & control , Células Secretoras de Insulina/patología , Masculino , Ratones , Obesidad/etiología , Obesidad/patología , Obesidad/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...