RESUMEN
Adaptive human-computer systems require the recognition of human behavior states to provide real-time feedback to scaffold skill learning. These systems are being researched extensively for intervention and training in individuals with autism spectrum disorder (ASD). Autistic individuals are prone to social communication and behavioral differences that contribute to their high rate of unemployment. Teamwork training, which is beneficial for all people, can be a pivotal step in securing employment for these individuals. To broaden the reach of the training, virtual reality is a good option. However, adaptive virtual reality systems require real-time detection of behavior. Manual labeling of data is time-consuming and resource-intensive, making automated data annotation essential. In this paper, we propose a semi-supervised machine learning method to supplement manual data labeling of multimodal data in a collaborative virtual environment (CVE) used to train teamwork skills. With as little as 2.5% of the data manually labeled, the proposed semi-supervised learning model predicted labels for the remaining unlabeled data with an average accuracy of 81.3%, validating the use of semi-supervised learning to predict human behavior.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Realidad Virtual , Humanos , Aprendizaje Automático Supervisado , ComunicaciónRESUMEN
Delineation of Computed Tomography (CT) abdominal anatomical structure, specifically spleen segmentation, is useful for not only measuring tissue volume and biomarkers but also for monitoring interventions. Recently, segmentation algorithms using deep learning have been widely used to reduce time humans spend to label CT data. However, the computerized segmentation has two major difficulties: managing intermediate results (e.g., resampled scans, 2D sliced image for deep learning), and setting up the system environments and packages for autonomous execution. To overcome these issues, we propose an automated pipeline for the abdominal spleen segmentation. This pipeline provides an end-to-end synthesized process that allows users to avoid installing any packages and to deal with the intermediate results locally. The pipeline has three major stages: pre-processing of input data, segmentation of spleen using deep learning, 3D reconstruction with the generated labels by matching the segmentation results with the original image dimensions, which can then be used later and for display or demonstration. Given the same volume scan, the approach described here takes about 50â¯s on average whereas the manual segmentation takes about 30â¯min on the average. Even if it includes all subsidiary processes such as preprocessing and necessary setups, the whole pipeline process requires on the average 20â¯min from beginning to end.
Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Bazo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Factores de TiempoRESUMEN
This paper describes the definition and testing of a new type of median filter for images. The topological median filter implements some existing ideas and some new ideas on fuzzy connectedness to improve, over a conventional median filter, the extraction of edges in noise. The concept of alpha-connectivity is defined and used to create an algorithm for computing the degree of connectedness of a pixel to all the other pixels in an arbitrary neighborhood. The resulting connectivity map of the neighborhood effectively disconnects peaks in the neighborhood that are separated from the center pixel by a valley in the brightness topology. The median of the connectivity map is an estimate of the median of the peak or plateau to which the center pixel belongs. Unlike the conventional median filter, the topological median is relatively unaffected by disconnected features in the neighborhood of the center pixel. Four topological median filters are defined. Qualitative and statistical analyses of the four filters are presented. It is demonstrated that edge detection can be more accurate on topologically median filtered images than on conventionally median filtered images.