Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
APL Bioeng ; 7(3): 036106, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37584027

RESUMEN

Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.

2.
Methods Mol Biol ; 2485: 133-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35618903

RESUMEN

Many acquired or inherited forms of heart disease as well as drugs are known to increase the susceptibility of patients to arrhythmias. To predict arrhythmogenic events and discover new therapeutic strategies to mitigate them, approaches to efficiently quantify the velocity of propagation in engineered cardiac tissues are important research tools. In this chapter, we describe how to collect videos of propagating calcium waves in engineered cardiac tissues with a high-speed camera mounted on an inverted fluorescence microscope. We also provide instructions for downloading and using our software package to analyze these videos and calculate propagation velocity. These techniques should be compatible with a variety of voltage- or calcium-sensitive fluorescent dyes or genetically encoded sensors. Although these approaches were originally developed for engineered neonatal rat cardiac tissues, the same procedures can likely be used with human-induced pluripotent stem cell-derived cardiac myocytes, paving the way for patient-specific analysis of propagation due to features such as tissue architecture, substrate rigidity, genetic mutations, or drug treatments.


Asunto(s)
Miocitos Cardíacos , Ingeniería de Tejidos , Animales , Arritmias Cardíacas , Calcio , Humanos , Microscopía Fluorescente , Ratas , Programas Informáticos , Ingeniería de Tejidos/métodos
3.
Lab Chip ; 21(4): 674-687, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33439202

RESUMEN

Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.


Asunto(s)
Dispositivos Laboratorio en un Chip , Compuestos de Estaño , Animales , Dimetilpolisiloxanos , Ratas , Reproducibilidad de los Resultados
4.
J Mol Cell Cardiol ; 150: 32-43, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038389

RESUMEN

Contraction of cardiac myocytes depends on energy generated by the mitochondria. During cardiac development and disease, the structure and function of the mitochondrial network in cardiac myocytes is known to remodel in concert with many other factors, including changes in nutrient availability, hemodynamic load, extracellular matrix (ECM) rigidity, cell shape, and maturation of other intracellular structures. However, the independent role of each of these factors on mitochondrial network architecture is poorly understood. In this study, we tested the hypothesis that cell aspect ratio (AR) and ECM rigidity regulate the architecture of the mitochondrial network in cardiac myocytes. To do this, we spin-coated glass coverslips with a soft, moderate, or stiff polymer. Next, we microcontact printed cell-sized rectangles of fibronectin with AR matching cardiac myocytes at various developmental or disease states onto the polymer surface. We then cultured neonatal rat ventricular myocytes on the patterned surfaces and used confocal microscopy and image processing techniques to quantify sarcomeric α-actinin volume, nucleus volume, and mitochondrial volume, surface area, and size distribution. On some substrates, α-actinin volume increased with cell AR but was not affected by ECM rigidity. Nucleus volume was mostly uniform across all conditions. In contrast, mitochondrial volume increased with cell AR on all substrates. Furthermore, mitochondrial surface area to volume ratio decreased as AR increased on all substrates. Large mitochondria were also more prevalent in cardiac myocytes with higher AR. For select AR, mitochondria were also smaller as ECM rigidity increased. Collectively, these results suggest that mitochondrial architecture in cardiac myocytes is strongly influenced by cell shape and moderately influenced by ECM rigidity. These data have important implications for understanding the factors that impact metabolic performance during heart development and disease.


Asunto(s)
Forma de la Célula , Matriz Extracelular/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Actinina/metabolismo , Animales , Ingeniería Celular , Tamaño del Núcleo Celular , Tamaño de la Célula , Ratas Sprague-Dawley
5.
Integr Biol (Camb) ; 12(2): 34-46, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118279

RESUMEN

Disruptions to cardiac tissue microstructure are common in diseased or injured myocardium and are known substrates for arrhythmias. However, we have a relatively coarse understanding of the relationships between myocardial tissue microstructure, propagation velocity and calcium cycling, due largely to the limitations of conventional experimental tools. To address this, we used microcontact printing to engineer strands of cardiac tissue with eight different widths, quantified several structural and functional parameters and established correlation coefficients. As strand width increased, actin alignment, nuclei density, sarcomere index and cell aspect ratio decreased with unique trends. The propagation velocity of calcium waves decreased and the rise time of calcium transients increased with increasing strand width. The decay time constant of calcium transients decreased and then slightly increased with increasing strand width. Based on correlation coefficients, actin alignment was the strongest predictor of propagation velocity and calcium transient rise time. Sarcomere index and cell aspect ratio were also strongly correlated with propagation velocity. Actin alignment, sarcomere index and cell aspect ratio were all weak predictors of the calcium transient decay time constant. We also measured the expression of several genes relevant to propagation and calcium cycling and found higher expression of the genes that encode for connexin 43 (Cx43) and a subunit of L-type calcium channels in thin strands compared to isotropic tissues. Together, these results suggest that thinner strands have higher values of propagation velocity and calcium transient rise time due to a combination of favorable tissue microstructure and enhanced expression of genes for Cx43 and L-type calcium channels. These data are important for defining how microstructural features regulate intercellular and intracellular calcium handling, which is needed to understand mechanisms of propagation in physiological situations and arrhythmogenesis in pathological situations.


Asunto(s)
Calcio/metabolismo , Miocardio/patología , Ingeniería de Tejidos/métodos , Actinas/química , Compuestos de Anilina , Animales , Animales Recién Nacidos , Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Conexina 43/metabolismo , Dimetilpolisiloxanos/química , Fibronectinas/química , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Humanos , Células Musculares/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Xantenos
6.
Lab Chip ; 20(2): 274-284, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31872200

RESUMEN

Myocardial infarction and heart failure are leading causes of death worldwide, in large part because adult human myocardium has extremely limited regeneration capacity. Zebrafish are a powerful model for identifying new strategies for human cardiac repair because their hearts regenerate after relatively severe injuries. Zebrafish are also relatively scalable and compatible with many genetic tools. However, characterizing the regeneration process in live adult zebrafish hearts has proved challenging because adult fish are opaque, preventing live imaging in vivo. An alternative strategy is to explant and culture intact adult zebrafish hearts and investigate them ex vivo. However, explanted hearts maintained in conventional culture conditions experience rapid declines in morphology and physiology. To overcome these limitations, we designed and fabricated a fluidic device for culturing explanted adult zebrafish hearts with constant media perfusion that is also compatible with live imaging. We then compared the morphology and calcium activity of hearts cultured in the device, hearts cultured statically in dishes, and freshly explanted hearts. After one week of culture, hearts in the device experienced significantly less morphological degradation compared to hearts cultured in dishes. Hearts cultured in devices for one week also maintained capture rates similar to fresh hearts, unlike hearts cultured in dishes. We then cultured explanted injured hearts in the device and used live imaging techniques to continuously record the myocardial revascularization process over several days, demonstrating how our device is compatible with long-term live imaging and thereby enables unprecedented visual access to the multi-day process of adult zebrafish heart regeneration.


Asunto(s)
Corazón/diagnóstico por imagen , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Tejidos , Animales , Pez Cebra
7.
Acta Biomater ; 97: 281-295, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401347

RESUMEN

In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes. STATEMENT OF SIGNIFICANCE: Cardiac development and disease are associated with remodeling of the extracellular matrix coincident with metabolic rewiring of cardiac myocytes. However, little is known about the direct impact of the biochemical and mechanical properties of the extracellular matrix on the metabolic function of cardiac myocytes. In this study, oxygen consumption rates were measured in neonatal rat ventricular myocytes maintained on several commonly-used biomaterial substrates to reveal new relationships between the extracellular matrix and cardiac myocyte metabolism. Several mitochondrial parameters were enhanced on gelatin hydrogels compared to synthetic PDMS substrates. These data are important for comprehensively understanding matrix-regulation of cardiac myocyte physiology. Additionally, these data should be considered when selecting scaffolds for engineering in vitro cardiac tissue models.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Proteínas de la Matriz Extracelular/química , Hidrogeles/química , Mitocondrias Cardíacas/metabolismo , Mioblastos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Ratones , Mioblastos Cardíacos/citología , Miocitos Cardíacos/citología
8.
Cell Mol Bioeng ; 11(5): 337-352, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31719889

RESUMEN

INTRODUCTION: In the myocardium, rapid propagation of action potentials and subsequent calcium waves is critical for synchronizing the contraction of cardiac myocytes and maximizing cardiac output. In many pathological settings, diverse remodeling of the tissue microenvironment is correlated with arrhythmias and decreased cardiac output, but the precise impact of tissue remodeling on propagation is not completely understood. Our objective was to delineate how multiple features within the cardiac tissue microenvironment modulate propagation velocity. METHODS: To recapitulate diverse myocardial tissue microenvironments, we engineered substrates with tunable elasticity, patterning, composition, and topography using two formulations of polydimethylsiloxane (PDMS) micropatterned with fibronectin and gelatin hydrogels with flat or micromolded features. We cultured neonatal rat ventricular myocytes on these substrates and quantified cell density, tissue alignment, and cell shape. We used a fluorescent calcium indicator, high-speed microscopy, and newly-developed analysis software to record and quantify calcium wave propagation velocity (CPV). RESULTS: For all substrates, tissue alignment and cell aspect ratio were higher in aligned compared to isotropic tissues. Isotropic CPV and longitudinal CPV were similar across conditions, but transverse CPV was lower on micromolded gelatin hydrogels compared to micropatterned soft and stiff PDMS. In aligned tissues, the anisotropy ratio of CPV (longitudinal CPV/transverse CPV) was lower on micropatterned soft PDMS compared to micropatterned stiff PDMS and micromolded gelatin hydrogels. CONCLUSION: Propagation velocity in engineered cardiac tissues is sensitive to features in the tissue microenvironment, such as alignment, matrix elasticity, and matrix topography, which may underlie arrhythmias in conditions with pathological tissue remodeling.

9.
Am J Physiol Heart Circ Physiol ; 313(4): H757-H767, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733449

RESUMEN

Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.NEW & NOTEWORTHY A new methodology has been developed to measure O2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses.


Asunto(s)
Matriz Extracelular/fisiología , Corazón/fisiología , Mitocondrias Cardíacas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Elasticidad , Metabolismo Energético/fisiología , Fibronectinas/metabolismo , Miocitos Cardíacos/fisiología , Miofibrillas/fisiología , Consumo de Oxígeno/fisiología , Ratas , Ratas Sprague-Dawley
10.
Integr Biol (Camb) ; 9(9): 730-741, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28726917

RESUMEN

Cardiovascular diseases are a leading cause of death, in part due to limitations of existing models of the myocardium. Myocardium consists of aligned, contractile cardiac myocytes interspersed with fibroblasts that synthesize extracellular matrix (ECM). The cellular demographics and biochemical and mechanical properties of the ECM remodel in many different cardiac diseases. However, the impact of diverse cellular and extracellular remodeling on the contractile output of the myocardium are poorly understood. To address this, we micropatterned 13 kPa and 90 kPa polyacrylamide gels with aligned squares of fibronectin (FN) or laminin (LN). We seeded gels with two concentrations of primary neonatal rat ventricular myocytes, which naturally contain fibroblasts. Cells assembled into aligned "µMyocardia" with fibroblast : myocyte ratios dependent on initial seeding concentration. Using traction force microscopy (TFM), we found that the peak systolic longitudinal cross-sectional force was similar across conditions, but the peak systolic work was significantly lower on 90 kPa gels. This indicates that ECM elasticity dominates over ECM ligand and cell demographics in regulating contractile output. Because our platform provides independent control over cell-cell and cell-matrix interactions, it has many applications for cardiac disease modeling.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/citología , Ingeniería de Tejidos/métodos , Resinas Acrílicas , Animales , Fenómenos Biomecánicos , Células Cultivadas , Matriz Extracelular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Ratas , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...