RESUMEN
Introduction: Chronic pain is a personal experience influenced by multiple biopsychosocial factors. Using a pain intensity measure alone to assess the effectiveness of a chronic pain intervention fails to fully evaluate its impact on the multifaceted chronic pain experience. The holistic minimal clinically important difference (MCID) is a composite outcome developed to provide a comprehensive assessment of chronic pain in response to intervention, across 5 outcome domains: pain intensity, health-related quality of life, sleep quality, physical, and emotional function. To focus on domains where the individual need is greatest, the holistic MCID reflects the cumulative MCID averaged over only the domains where subjects were impaired preintervention. Objectives: To assess the internal and construct validity of the Holistic MCID score to inform its future use as an evidence-based tool. Methods: This validation study was undertaken using data from the EVOKE trial with 111 patients up to 24-month follow-up. Internal consistency of the holistic MCID was assessed using Cronbach alpha statistic and dimensional exploration using principal component analysis. Results: The holistic MCID measure demonstrated strong internal consistency with Cronbach alpha >0.7 at all follow-ups. Principal component analysis showed one overarching holistic dimension to be present in the composite. Construct validity was demonstrated by an increase in the holistic MCID score being associated with both increased Patients' Global Impression of Change, EuroQol visual analogue scale score, and each of the outcome domains in a "leave-one-out" analysis (all P < 0.001). Conclusion: The holistic MCID provides a valid measure for the comprehensive, personalized assessment of response after a chronic pain intervention. The validity of the holistic MCID requires further confirmation in other chronic pain populations and with different interventions.
RESUMEN
BACKGROUND: The SENZA-PDN study evaluated high-frequency 10-kHz spinal cord stimulation (SCS) for the treatment of painful diabetic neuropathy (PDN). Over 24 months, 10-kHz SCS provided sustained pain relief and improved health-related quality of life. This report presents additional outcomes from the SENZA-PDN study, focusing on diabetes-related pain and quality of life outcomes. METHODS: The SENZA-PDN study randomized 216 participants with refractory PDN to receive either conventional medical management (CMM) or 10-kHz SCS plus CMM (10-kHz SCS + CMM), allowing crossover after six months if pain relief was insufficient. Postimplantation assessments at 24 months were completed by 142 participants with a permanent 10-kHz SCS implant, comprising 84 initial and 58 crossover recipients. Measures included the Brief Pain Inventory for Diabetic Peripheral Neuropathy (BPI-DPN), Diabetes-Related Quality of Life (DQOL), Global Assessment of Functioning (GAF), and treatment satisfaction. RESULTS: Over 24 months, 10-kHz SCS treatment significantly reduced pain severity by 66.9% (P < .001; BPI-DPN) and pain interference with mood and daily activities by 65.8% (P < .001; BPI-DPN). Significant improvements were also observed in overall DQOL score (P < .001) and GAF score (P < .001), and 91.5% of participants reported satisfaction with treatment. CONCLUSIONS: High-frequency 10-kHz SCS significantly decreased pain severity and provided additional clinically meaningful improvements in DQOL and overall functioning for patients with PDN. The robust and sustained benefits over 24 months, coupled with high participant satisfaction, highlight that 10-kHz SCS is an efficacious and comprehensive therapy for patients with PDN.
RESUMEN
Purpose: The recent SENZA-PDN study showed that high-frequency (10kHz) spinal cord stimulation (SCS) provided significant, durable pain relief for individuals with painful diabetic neuropathy (PDN), along with secondary benefits, including improved sleep quality and HRQoL. Given that metabolic factors and chronic neuropathic pain are related, we evaluated potential secondary effects of 10kHz SCS on hemoglobin A1c (HbA1c) and weight in SENZA-PDN participants with type 2 diabetes (T2D). Patients and Methods: This analysis included 144 participants with T2D and lower limb pain due to PDN who received 10kHz SCS during the SENZA-PDN study. Changes in HbA1c, weight, pain intensity, and sleep were evaluated over 24 months, with participants stratified according to preimplantation HbA1c (>7% and >8%) and body mass index (BMI; ≥30 and ≥35 kg/m2). Results: At 24 months, participants with preimplantation HbA1c >7% and >8% achieved clinically meaningful and statistically significant mean reductions in HbA1c of 0.5% (P = 0.031) and 1.1% (P = 0.004), respectively. Additionally, we observed a significant mean weight loss of 3.1 kg (P = 0.003) across all study participants. In subgroups with BMI ≥30 and ≥35 kg/m2, weight reductions at 24 months were 4.1 kg (P = 0.001) and 5.4 kg (P = 0.005), respectively. These reductions were accompanied by a mean pain reduction of 79.8% and a mean decrease in pain interference with sleep of 65.2% at 24 months across all cohorts. Conclusion: This is the first study of SCS to demonstrate long-term, significant, and clinically meaningful reductions in HbA1c and weight in study participants with PDN and T2D, particularly among those with elevated preimplantation HbA1c and BMI. Although the mechanism for these improvements has yet to be established, the results suggest possible direct and indirect metabolic benefits with 10kHz SCS in addition to durable pain relief. Trial Registration: ClincalTrials.gov Identifier, NCT03228420.
RESUMEN
OBJECTIVES: Spinal cord stimulation (SCS) has been challenged by the lack of neurophysiologic data to guide therapy optimization. Current SCS programming by trial-and-error results in suboptimal and variable therapeutic effects. A novel system with a physiologic closed-loop feedback mechanism using evoked-compound action potentials enables the optimization of physiologic neural dose by consistently and accurately activating spinal cord fibers. We aimed to identify neurophysiologic dose metrics and their ranges that resulted in clinically meaningful treatment responses. MATERIALS AND METHODS: Subjects from 3 clinical studies (n = 180) with baseline back and leg pain ≥60 mm visual analog scale and physical function in the severe to crippled category were included. Maximal analgesic effect (MAE) was operationally defined as the greatest percent reduction in pain intensity or as the greatest cumulative responder score (minimal clinically important differences [MCIDs]) obtained within the first 3 months of SCS implant. The physiologic metrics that produced the MAE were analyzed. RESULTS: We showed that a neural dose regimen with a high neural dose accuracy of 2.8µV and dose ratio of 1.4 resulted in a profound clinical benefit to chronic pain patients (MAE of 79 ± 1% for pain reduction and 12.5 ± 0.4 MCIDs). No differences were observed for MAE or neurophysiological dose metrics between the trial phase and post-implant MAE visit. CONCLUSION: For the first time, an evidence-based neural dose regimen is available for a neurostimulation intervention as a starting point to enable optimization of clinical benefit, monitoring of adherence, and management of the therapy.
RESUMEN
OBJECTIVE: The multicenter, randomized, double-blinded, active-sham controlled trial (high-freQUEncy nerve block for poST amputation pain [QUEST]) was conducted to show the safety and efficacy of a novel, peripherally placed high-frequency nerve block (HFNB) system in treating chronic postamputation pain (PAP) in patients with lower limb amputations. The primary outcomes from QUEST were reported previously. This study presents the long-term, single-cross-over, secondary outcomes of on-demand HFNB treatment for chronic PAP. MATERIALS AND METHODS: After the three-month randomized period, subjects in the active-sham group were crossed over to receive therapy for 12 months. Subjects self-administered HFNB therapy as needed and reported their pain (numerical rating scale [NRS]; range, 1-10) before and 30 and 120 minutes after each treatment. Pain medication use was reported throughout the study. Pain-days per week and quality of life (QOL) were assessed using the Brief Pain Inventory (BPI). Adverse events (AEs) were recorded for all subjects implanted for 12 months. RESULTS: Of 180 subjects implanted in QUEST, 164 (91%) were included in the cross-over period, and 146 (82%) completed follow-up. By month 12, average NRS pain in the combined cohort was reduced by 2.3 ± 2.2 points (95% CI, 1.7-2.8; p < 0.0001) 30 minutes after treatment and 2.9 ± 2.4 points (95% CI, 2.2-3.6; p < 0.0001) 120 minutes after treatment. Mean pain-days per week were significantly reduced (-3.5 ± 2.7 days; p < 0.001), and subject daily opioid use was reduced by 6.7 ± 29.0 morphine equivalent dose from baseline to month 12 (p = 0.013). Mean BPI-interference scores (QOL) improved by 2.7 ± 2.7 points from baseline (p < 0.001). The incidence of nonserious AEs and serious AEs was 72% (130/180) and 42% (76/180), respectively; serious device-related AEs occurred in 15 of 180 subjects (8%). CONCLUSION: Overall, HFNB delivered directly to the damaged peripheral nerve provided sustained, on-demand relief of acute PAP exacerbations, reduced opioid utilization, and improved QOL for patients with lower limb amputations with chronic PAP.
RESUMEN
INTRODUCTION: Drawbacks of fixed-output spinal cord stimulation (SCS) screening trials may lead to compromised trial outcomes and poor predictability of long-term success. Evoked compound action potential (ECAP) dose-controlled closed-loop (CL) SCS allows objective confirmation of therapeutic neural activation and pulse-to-pulse stimulation adjustment. We report on the immediate patient-reported and neurophysiologic treatment response post-physiologic CL-SCS and feasibility of early SCS trial responder prediction. METHODS: Patient-reported pain relief, functional improvement, and willingness to proceed to permanent implant were compared between the day of the trial procedure (Day 0) and end of trial (EOT) for 132 participants in the ECAP Study undergoing a trial stimulation period. ECAP-based neurophysiologic measurements from Day 0 and EOT were compared between responder groups. RESULTS: A high positive predictive value (PPV) was achieved with 98.4% (60/61) of patients successful on the Day 0 evaluation also responding at EOT. The false-positive rate (FPR) was 5.6% (1/18). ECAP-based neurophysiologic measures were not different between patients who passed all Day 0 success criteria ("Day 0 successes") and those who did not ("needed longer to evaluate the therapy"). However, at EOT, responders had higher therapeutic usage and dose levels compared to non-responders. CONCLUSIONS: The high PPV and low FPR of the Day 0 evaluation provide confidence in predicting trial outcomes as early as the day of the procedure. Day 0 trials may be beneficial for reducing patient burden and complication rates associated with extended trials. ECAP dose-controlled CL-SCS therapy may provide objective data and rapid-onset pain relief to improve prognostic ability of SCS trials in predicting outcomes. TRIAL REGISTRATION: The ECAP Study is registered with ClinicalTrials.gov (NCT04319887).
RESUMEN
Purpose: This multicenter, randomized, double-blinded, active sham-controlled pivotal study was designed to assess the efficacy and safety of high-frequency nerve block treatment for chronic post-amputation and phantom limb pain. Patients and Methods: QUEST enrolled 180 unilateral lower-limb amputees with severe post-amputation pain, 170 of whom were implanted with the Altius device, were randomized 1:1 to active-sham or treatment groups and reached the primary endpoint. Responders were those subjects who received ≥50% pain relief 30 min after treatment in ≥50% of their self-initiated treatment sessions within the 3-month randomized period. Differences between the active treatment and sham control groups as well as numerous secondary outcomes were determined. Results: At 30-min, (primary outcome), 24.7% of the treatment group were responders compared to 7.1% of the control group (p=0.002). At 120-minutes following treatment, responder rates were 46.8% in the Treatment group and 22.2% in the Control group (p=0.001). Improvement in Brief Pain Inventory interference score of 2.3 ± 0.29 was significantly greater in treatment group than the 1.3 ± 0.26-point change in the Control group (p = 0.01). Opioid usage, although not significantly different, trended towards a greater reduction in the treatment group than in the control group. The incidence of adverse events did not differ significantly between the treatment and control groups. Conclusion: The primary outcomes of the study were met, and the majority of Treatment patients experienced a substantial improvement in PAP (regardless of meeting the study definition of a responder). The significant in PAP was associated with significantly improved QOL metrics, and a trend towards reduced opioid utilization compared to Control. These data indicate that Altius treatment represents a significant therapeutic advancement for lower-limb amputees suffering from chronic PAP.
RESUMEN
INTRODUCTION: The International Neuromodulation Society (INS) has recognized a need to establish best practices for optimizing implantable devices and salvage when ideal outcomes are not realized. This group has established the Neurostimulation Appropriateness Consensus Committee (NACC)® to offer guidance on matters needed for both our members and the broader community of those affected by neuromodulation devices. MATERIALS AND METHODS: The executive committee of the INS nominated faculty for this NACC® publication on the basis of expertise, publications, and career work on the issue. In addition, the faculty was chosen in consideration of diversity and inclusion of different career paths and demographic categories. Once chosen, the faculty was asked to grade current evidence and along with expert opinion create consensus recommendations to address the lapses in information on this topic. RESULTS: The NACC® group established informative and authoritative recommendations on the salvage and optimization of care for those with indwelling devices. The recommendations are based on evidence and expert opinion and will be expected to evolve as new data are generated for each topic. CONCLUSIONS: NACC® guidance should be considered for any patient with less-than-optimal outcomes with a stimulation device implanted for treating chronic pain. Consideration should be given to these consensus points to salvage a potentially failed device before explant.
Asunto(s)
Terapia Recuperativa , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Estimulación de la Médula Espinal/normas , Terapia Recuperativa/métodos , Terapia Recuperativa/normas , Consenso , Resultado del Tratamiento , Dolor Crónico/terapiaRESUMEN
Introduction: Painful diabetic neuropathy (PDN) is a leading cause of pain and disability globally with a lack of consensus on the appropriate treatment of those suffering from this condition. Recent advancements in both pharmacotherapy and interventional approaches have broadened the treatment options for PDN. There exists a need for a comprehensive guideline for the safe and effective treatment of patients suffering from PDN. Objective: The SWEET Guideline was developed to provide clinicians with the most comprehensive guideline for the safe and appropriate treatment of patients suffering from PDN. Methods: The American Society of Pain and Neuroscience (ASPN) identified an educational need for a comprehensive clinical guideline to provide evidence-based recommendations for PDN. A multidisciplinary group of international experts developed the SWEET guideline. The world literature in English was searched using Medline, EMBASE, Cochrane CENTRAL, BioMed Central, Web of Science, Google Scholar, PubMed, Current Contents Connect, Meeting Abstracts, and Scopus to identify and compile the evidence for diabetic neuropathy pain treatments (per section as listed in the manuscript) for the treatment of pain. Manuscripts from 2000-present were included in the search process. Results: After a comprehensive review and analysis of the available evidence, the ASPN SWEET guideline was able to rate the literature and provide therapy grades for most available treatments for PDN utilizing the United States Preventive Services Task Force criteria. Conclusion: The ASPN SWEET Guideline represents the most comprehensive review of the available treatments for PDN and their appropriate and safe utilization.
RESUMEN
BACKGROUND: Painful diabetic neuropathy (PDN) can result in the loss of protective sensation, in which people are at twice the likelihood of foot ulceration and three times the risk of lower extremity amputation. Here, we evaluated the long-term effects of high-frequency (10 kHz) paresthesia-independent spinal cord stimulation (SCS) on protective sensation in the feet and the associated risk of foot ulceration for individuals with PDN. METHODS: The SENZA-PDN clinical study was a randomized, controlled trial in which 216 participants with PDN were randomized to receive either conventional medical management (CMM) alone or 10 kHz SCS plus CMM, with optional treatment crossover after 6 months. At study visits (baseline through 24 months), 10-g monofilament sensory assessments were conducted at 10 locations per foot. Two published methods were used to evaluate protective sensation via classifying risk of foot ulceration. RESULTS: Participants in the 10 kHz SCS group reported increased numbers of sensate locations as compared to CMM alone (P < .001) and to preimplantation (P < .01) and were significantly more likely to be at low risk of foot ulceration using both classification methods. The proportion of low-risk participants approximately doubled from preimplantation to 3 months postimplantation and remained stable through 24 months (P ≤ .01). CONCLUSIONS: Significant improvements were observed in protective sensation from preimplantation to 24 months postimplantation for the 10 kHz SCS group. With this unique, disease-modifying improvement in sensory function, 10 kHz SCS provides the potential to reduce ulceration, amputation, and other severe sequelae of PDN. TRIAL REGISTRATION: The SENZA-PDN study is registered on ClinicalTrials.gov with identifier NCT03228420.
RESUMEN
INTRODUCTION: Chronic pain patients may experience impairments in multiple health-related domains. The design and interpretation of clinical trials of chronic pain interventions, however, remains primarily focused on treatment effects on pain intensity. This study investigates a novel, multidimensional holistic treatment response to evoked compound action potential-controlled closed-loop versus open-loop spinal cord stimulation as well as the degree of neural activation that produced that treatment response. METHODS: Outcome data for pain intensity, physical function, health-related quality of life, sleep quality and emotional function were derived from individual patient level data from the EVOKE multicenter, participant, investigator, and outcome assessor-blinded, parallel-arm randomized controlled trial with 24 month follow-up. Evaluation of holistic treatment response considered whether the baseline score was worse than normative values and whether minimal clinical important differences were reached in each of the domains that were impaired at baseline. A cumulative responder score was calculated to reflect the total minimal clinical important differences accumulated across all domains. Objective neurophysiological data, including spinal cord activation were measured. RESULTS: Patients were randomized to closed-loop (n=67) or open-loop (n=67). A greater proportion of patients with closed-loop spinal cord stimulation (49.3% vs 26.9%) were holistic responders at 24-month follow-up, with at least one minimal clinical important difference in all impaired domains (absolute risk difference: 22.4%, 95% CI 6.4% to 38.4%, p=0.012). The cumulative responder score was significantly greater for closed-loop patients at all time points and resulted in the achievement of more than three additional minimal clinical important differences at 24-month follow-up (mean difference 3.4, 95% CI 1.3 to 5.5, p=0.002). Neural activation was three times more accurate in closed-loop spinal cord stimulation (p<0.001 at all time points). CONCLUSION: The results of this study suggest that closed-loop spinal cord stimulation can provide sustained clinically meaningful improvements in multiple domains and provide holistic improvement in the long-term for patients with chronic refractory pain. TRIAL REGISTRATION NUMBER: NCT02924129.
Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Dolor Crónico/diagnóstico , Dolor Crónico/terapia , Estimulación de la Médula Espinal/métodos , Calidad de Vida , Método Doble Ciego , Dimensión del Dolor/métodos , Resultado del Tratamiento , Médula EspinalRESUMEN
AIMS: To evaluate the long-term efficacy of high-frequency (10 kHz) spinal cord stimulation (SCS) for treating refractory painful diabetic neuropathy (PDN). METHODS: The SENZA-PDN study was a prospective, multicenter, randomized controlled trial that compared conventional medical management (CMM) alone with 10 kHz SCS plus CMM (10 kHz SCS+CMM) in 216 patients with refractory PDN. After 6 months, participants with insufficient pain relief could cross over to the other treatment. In total, 142 patients with a 10 kHz SCS system were followed for 24 months, including 84 initial 10 kHz SCS+CMM recipients and 58 crossovers from CMM alone. Assessments included pain intensity, health-related quality of life (HRQoL), sleep, and neurological function. Investigators assessed neurological function via sensory, reflex, and motor tests. They identified a clinically meaningful improvement relative to the baseline assessment if there was a significant persistent improvement in neurological function that impacted the participant's well-being and was attributable to a neurological finding. RESULTS: At 24 months, 10 kHz SCS reduced pain by a mean of 79.9% compared to baseline, with 90.1% of participants experiencing ≥50% pain relief. Participants had significantly improved HRQoL and sleep, and 65.7% demonstrated clinically meaningful neurological improvement. Five (3.2%) SCS systems were explanted due to infection. CONCLUSIONS: Over 24 months, 10 kHz SCS provided durable pain relief and significant improvements in HRQoL and sleep. Furthermore, the majority of participants demonstrated neurological improvement. These long-term data support 10 kHz SCS as a safe and highly effective therapy for PDN. TRIAL REGISTRATION: ClincalTrials.gov Identifier, NCT03228420.
Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Neuropatías Diabéticas/terapia , Calidad de Vida , Estudios Prospectivos , Dolor , Resultado del TratamientoRESUMEN
BACKGROUND: Diabetic peripheral neuropathy, a common comorbidity of diabetes, is a neurodegenerative disorder that targets sensory, autonomic, and motor nerves frequently associated with painful diabetic neuropathy (PDN). PDN carries an economic burden as the result of reduced work and productivity. A recent multicenter randomized controlled trial, SENZA-PDN (NCT03228420), assessed the impact of high-frequency (10 kHz) spinal cord stimulation (SCS) on pain relief. The effects of high-frequency SCS on health care resource utilization and medical costs are not known. OBJECTIVE: To evaluate the effect of high-frequency (10 kHz) SCS on health care resource utilization (HRU) and medical costs in patients with PDN using data from the SENZA-PDN trial. METHODS: Participants with PDN were randomly assigned 1:1 to receive either 10 kHz SCS plus conventional medical management (CMM) (SCS treatment group) or CMM alone (CMM treatment group). Patient outcomes and HRU up to the 6-month follow-up are reported here. Costs (2020 USD) for each service was estimated based on publicly available Medicare fee schedules, Medicare claims data, and literature. HRU metrics of inpatient and outpatient contacts and costs are reported as means and SDs. Univariate and bivariate analyses were used to compare SCS and CMM treatment groups at 6 months. RESULTS: At 6-month follow up, the SCS arm experienced approximately half the mean rate of hospitalizations per patient compared with the CMM treatment group (0.08 vs 0.15; P = 0.066). The CMM treatment group's total health care costs per patient were approximately 51% higher compared with the SCS treatment group (equivalent to mean annual cost per patient of $9,532 vs $6,300). CONCLUSIONS: Our analysis of the SENZA-PDN trial indicates that the addition of 10 kHz SCS therapy results in lower rates of hospitalization and consequently lower health care costs among patients with PDN compared with those receiving conventional management alone.
Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Estimulación de la Médula Espinal , Estados Unidos , Humanos , Anciano , Neuropatías Diabéticas/terapia , Medicare , Aceptación de la Atención de Salud , Costos de la Atención en SaludRESUMEN
INTRODUCTION: The evidence for spinal cord stimulation (SCS) has been criticized for the absence of blinded, parallel randomized controlled trials (RCTs) and limited evaluations of the long-term effects of SCS in RCTs. The aim of this study was to determine whether evoked compound action potential (ECAP)-controlled, closed-loop SCS (CL-SCS) is associated with better outcomes when compared with fixed-output, open-loop SCS (OL-SCS) 36 months following implant. METHODS: The EVOKE study was a multicenter, participant-blinded, investigator-blinded, and outcome assessor-blinded, randomized, controlled, parallel-arm clinical trial that compared ECAP-controlled CL-SCS with fixed-output OL-SCS. Participants with chronic, intractable back and leg pain refractory to conservative therapy were enrolled between January 2017 and February 2018, with follow-up through 36 months. The primary outcome was a reduction of at least 50% in overall back and leg pain. Holistic treatment response, a composite outcome including pain intensity, physical and emotional functioning, sleep, and health-related quality of life, and objective neural activation was also assessed. RESULTS: At 36 months, more CL-SCS than OL-SCS participants reported ≥50% reduction (CL-SCS=77.6%, OL-SCS=49.3%; difference: 28.4%, 95% CI 12.8% to 43.9%, p<0.001) and ≥80% reduction (CL-SCS=49.3%, OL-SCS=31.3%; difference: 17.9, 95% CI 1.6% to 34.2%, p=0.032) in overall back and leg pain intensity. Clinically meaningful improvements from baseline were observed at 36 months in both CL-SCS and OL-SCS groups in all other patient-reported outcomes with greater levels of improvement with CL-SCS. A greater proportion of patients with CL-SCS were holistic treatment responders at 36-month follow-up (44.8% vs 28.4%), with a greater cumulative responder score for CL-SCS patients. Greater neural activation and accuracy were observed with CL-SCS. There were no differences between CL-SCS and OL-SCS groups in adverse events. No explants due to loss of efficacy were observed in the CL-SCS group. CONCLUSION: This long-term evaluation with objective measurement of SCS therapy demonstrated that ECAP-controlled CL-SCS resulted in sustained, durable pain relief and superior holistic treatment response through 36 months. Greater neural activation and increased accuracy of therapy delivery were observed with ECAP-controlled CL-SCS than OL-SCS. TRIAL REGISTRATION NUMBER: NCT02924129.
RESUMEN
Introduction: Painful peripheral neuropathy (PPN) is a debilitating condition with varied etiologies. Spinal cord stimulation (SCS) is increasingly used when conservative treatments fail to provide adequate pain relief. Few published reviews have examined SCS outcomes in all forms of PPN. Methods: We conducted a systematic review of SCS in PPN. The PubMed database was searched up to February 7th, 2022, for peer-reviewed studies of SCS that enrolled PPN patients with pain symptoms in their lower limbs and/or lower extremities. We assessed the quality of randomized controlled trial (RCT) evidence using the Cochrane risk of bias tool. Data were tabulated and presented narratively. Results: Twenty eligible studies documented SCS treatment in PPN patients, including 10 kHz SCS, traditional low-frequency SCS (t-SCS), dorsal root ganglion stimulation (DRGS), and burst SCS. In total, 451 patients received a permanent implant (10 kHz SCS, n=267; t-SCS, n=147; DRGS, n=25; burst SCS, n=12). Approximately 88% of implanted patients had painful diabetic neuropathy (PDN). Overall, we found clinically meaningful pain relief (≥30%) with all SCS modalities. Among the studies, RCTs supported the use of 10 kHz SCS and t-SCS to treat PDN, with 10 kHz SCS providing a higher reduction in pain (76%) than t-SCS (38-55%). Pain relief with 10 kHz SCS and DRGS in other PPN etiologies ranged from 42-81%. In addition, 66-71% of PDN patients and 38% of nondiabetic PPN patients experienced neurological improvement with 10 kHz SCS. Conclusion: Our review found clinically meaningful pain relief in PPN patients after SCS treatment. RCT evidence supported the use of 10 kHz SCS and t-SCS in the diabetic neuropathy subpopulation, with more robust pain relief evident with 10 kHz SCS. Outcomes in other PPN etiologies were also promising for 10 kHz SCS. In addition, a majority of PDN patients experienced neurological improvement with 10 kHz SCS, as did a notable subset of nondiabetic PPN patients.
RESUMEN
This study reports the needs-based development, effectiveness and feasibility of a novel, comprehensive spinal cord stimulation (SCS) digital curriculum designed for pain medicine trainees. The curriculum aims to address the documented systematic variability in SCS education and empower physicians with SCS expertise, which has been linked to utilization patterns and patient outcomes. Following a needs assessment, the authors developed a three-part SCS e-learning video curriculum with baseline and postcourse knowledge tests. Best practices were used for educational video production and test-question development. The study period was from 1 February 2020 to 31 December 2020. A total of 202 US-based pain fellows across two cohorts (early-fellowship and late-fellowship) completed the baseline knowledge assessment, while 122, 96 and 88 participants completed all available post-tests for Part I (Fundamentals), Part II (Cadaver Lab) and Part III (Decision Making, The Literature and Critical Applications), respectively. Both cohorts significantly increased knowledge scores from baseline to immediate post-test in all curriculum parts (p<0.001). The early-fellowship cohort experienced a higher rate of knowledge gain for Parts I and II (p=0.045 and p=0.027, respectively). On average, participants viewed 6.4 out of 9.6 hours (67%) of video content. Self-reported prior SCS experience had low to moderate positive correlations with Part I and Part III pretest scores (r=0.25, p=0.006; r=0.37, p<0.001, respectively). Initial evidence suggests that Pain Rounds provides an innovative and effective solution to the SCS curriculum deficit. A future controlled study should examine this digital curriculum's long-term impact on SCS practice and treatment outcomes.
Asunto(s)
Médicos , Estimulación de la Médula Espinal , Humanos , Dolor , Curriculum , Resultado del Tratamiento , Manejo del DolorRESUMEN
The COVID-19 pandemic caught many areas of medicine in a state of unpreparedness for conducting research and completing ongoing projects during a global crisis, including the field of pain medicine. Waves of infection led to a disjointed ability to provide care and conduct clinical research. The American Society of Pain and Neuroscience (ASPN) Research Group has created guidance for pragmatic and ethical considerations for research during future emergency or disaster situations. This analysis uses governmental guidance, scientific best practices, and expert opinion to address procedure-based or device-based clinical trials during such times. Current literature offers limited recommendations on this important issue, and the findings of this group fill a void for protocols to improve patient safety and efficacy, especially as we anticipate the impact of future disasters and spreading global infectious diseases. We recommend local adaptations to best practices and innovations to enable continued research while respecting the stressors to the research subjects, investigator teams, health-care systems, and to local infrastructure.
RESUMEN
BACKGROUND: Treatment response to spinal cord stimulation (SCS) is focused on the magnitude of effects on pain intensity. However, chronic pain is a multidimensional condition that may affect individuals in different ways and as such it seems reductionist to evaluate treatment response based solely on a unidimensional measure such as pain intensity. AIM: The aim of this article is to add to a framework started by IMMPACT for assessing the wider health impact of treatment with SCS for people with chronic pain, a "holistic treatment response". DISCUSSION: Several aspects need consideration in the assessment of a holistic treatment response. SCS device data and how it relates to patient outcomes, is essential to improve the understanding of the different types of SCS, improve patient selection, long-term clinical outcomes, and reproducibility of findings. The outcomes to include in the evaluation of a holistic treatment response need to consider clinical relevance for patients and clinicians. Assessment of the holistic response combines two key concepts of patient assessment: (1) patients level of baseline (pre-treatment) unmet need across a range of health domains; (2) demonstration of patient-relevant improvements in these health domains with treatment. The minimal clinical important difference (MCID) is an established approach to reflect changes after a clinical intervention that are meaningful for the patient and can be used to identify treatment response to each individual domain. A holistic treatment response needs to account for MCIDs in all domains of importance for which the patient presents dysfunctional scores pre-treatment. The number of domains included in a holistic treatment response may vary and should be considered on an individual basis. Physiologic confirmation of therapy delivery and utilisation should be included as part of the evaluation of a holistic treatment response and is essential to advance the field of SCS and increase transparency and reproducibility of the findings.
Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Dolor Crónico/diagnóstico , Dolor Crónico/terapia , Dolor Crónico/etiología , Estimulación de la Médula Espinal/métodos , Reproducibilidad de los Resultados , Resultado del Tratamiento , Médula EspinalRESUMEN
Up to 25% of people with diabetes develop painful diabetic neuropathy (PDN). The standard of care pharmacotherapies for PDN have limited efficacy with a considerable side effect profile. Spinal cord stimulation (SCS) is a form of electrical neurostimulation that modulates neural function via electrodes implanted into the spinal epidural space. While low frequency SCS has been shown to be potentially effective for treating pain associated with neuropathies, it masks pain perception by inducing paresthesia. Compared to low frequency SCS, high frequency (10 kHz) SCS delivers paresthesia-free therapy. As was shown in a randomized controlled trial, SENZA-PDN (NCT03228420), 10 kHz SCS is safe and effective for the treatment of painful diabetic neuropathy. 10 kHz SCS offered a comprehensive treatment that improved pain levels, sleep, quality of life, and neurological function. These improvements correlated with a high degree of patient satisfaction. 10 kHz SCS provides a safe, durable and effective treatment for PDN with the unique potential to improve neurological function. In patients for whom durable, effective treatments have been limited thus far, the findings of the SENZA-PDN study are encouraging.
Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Estimulación de la Médula Espinal , Humanos , Neuropatías Diabéticas/terapia , Dolor , Manejo del Dolor , Calidad de Vida , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Chronic low back pain is a worldwide leading cause of pain and disability. Degenerative disc disease has been the presumptive etiology in the majority of cases of chronic low back pain (CLBP). More recent study and treatments have discovered that the vertebral endplates play a large role in CLBP in a term defined as vertebrogenic back pain. As the vertebral endplates are highly innervated via the basivertebral nerve (BVN), this has resulted in a reliable target in treating patients suffering from vertebrogenic low back pain (VLBP). The application of BVN ablation for patients suffering from VLBP is still in its early stages of adoption and integration into spine care pathways. BVN ablation is grounded in a solid foundation of both pre-clinical and clinical evidence. With the emergence of this therapeutic option, the American Society of Pain and Neuroscience (ASPN) identified the need for formal evidence-based guidelines for the proper identification and selection of patients for BVN ablation in patients with VLBP. ASPN formed a multidisciplinary work group tasked to examine the available literature and form best practice guidelines on this subject. Based on the United States Preventative Task Force (USPSTF) criteria for grading evidence, gives BVN ablation Level A grade evidence with high certainty that the net benefit is substantial in appropriately selected individuals.