Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Auton Neurosci ; 254: 103192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896931

RESUMEN

BACKGROUND: Para-sympathetic vagal activation has profound influence on heart rate and other cardiovascular parameters. We tested the hypothesis that transcutaneous Vagal Nerve Stimulation (tVNS) through the auricular branch of the vagus nerve would attenuate the normal sympathetic response to central blood volume reduction by lower body negative pressure (LBNP). METHOD: 10 healthy volunteers (6 female; age 21 ± 2 years; weight 62 ± 13 kg; height 167 ± 12 cm) were included in this cross-over design trial. After 15 min rest in supine position, subjects underwent three 15-min periods of 30 mmHg LBNP intervention with and without cyclic tVNS stimulation. Continuous cardiovascular parameters (Nexfin) were recorded. RESULTS: Overall tVNS did not convincingly attenuate sympathetic response to central hypovolemia. Deactivation of the tVNS during LBNP resulted in increased MAP at 2.3 ± 0.5 mmHg (P < 0.001). Comparing the cyclic actual active stimulation periods to periods with pause during tVNS intervention showed a decrease in HR by 72.9 ± 11.2 to 70.2 ± 11.6 bpm (mean ± SD; P < 0.05), and concomitant increases in SV (86.0 ± 12.1 to 87.2 ± 12.6 mL; P < 0.05), MAP (82.9 ± 6.3 to 84.0 ± 6.2 mmHg; P < 0.05) and TPR (1116.0 ± 111.1 to 1153 ± 104.8 dyn*s/cm5; P < 0.05). CONCLUSION: tVNS in 30 s cycles during LBNP can selectively attenuate HR, prompting a compensatory augmented sympathetic response. It would appear the method used in this study at least, has an isolated cardiac inhibitory effect probably mediated by augmented vagal activity on the sinoatrial or atrio-ventricular node, possibly in combination with reduced activity in the sympathetic cardiac nerve.


Asunto(s)
Estudios Cruzados , Frecuencia Cardíaca , Presión Negativa de la Región Corporal Inferior , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Femenino , Masculino , Estimulación del Nervio Vago/métodos , Presión Negativa de la Región Corporal Inferior/métodos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto Joven , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología , Adulto , Nervio Vago/fisiología , Sistema Nervioso Simpático/fisiología
2.
J Appl Physiol (1985) ; 137(1): 32-41, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813612

RESUMEN

Blood volume shifts during postural adjustment lead to irregular distension of the internal jugular vein (IJV). In microgravity, distension may contribute to flow stasis and thromboembolism, though the regional implications and associated risk remain unexplored. We characterized regional differences in IJV volume distension and flow complexity during progressive head-down tilt (HDT) (0°, -6°, -15°, -30°) using conventional ultrasound and vector flow imaging. We also evaluated low-pressure thigh cuffs (40 mmHg) as a fluid shifting countermeasure during -6° HDT. Total IJV volume expanded 139 ± 95% from supine position (4.6 ± 2.7 mL) to -30° HDT (10.3 ± 5.0 mL). Blood flow profiles had greater vector uniformity at the cranial IJV region (P < 0.01) and became more dispersed with increasing tilt (P < 0.01). Qualitatively, flow was more uniform throughout the IJV during its early flow cycle phase and more disorganized during late flow phase. This disorganized flow was accentuated closer to the vessel wall, near the caudal region, and during greater HDT. Low-pressure thigh cuffs during -6° HDT decreased IJV volume at the cranial region (-12 ± 15%; P < 0.01) but not the caudal region (P = 0.20), although flow uniformity was unchanged (both regions, P > 0.25). We describe a distensible IJV accommodating large volume shifts along its length. Prominent flow dispersion was primarily found at the caudal region, suggesting multidirectional blood flow. Thigh cuffs appear effective for decreasing IJV volume but effects on flow complexity are minor. Flow complexity along the vessel length is likely related to IJV distension during chronic volume shifting and may be a precipitating factor for flow stasis and future thromboembolism risk.NEW & NOTEWORTHY The internal jugular vein (IJV) facilitates cerebral outflow and is sensitive to volume shifts. Concerns about IJV expansion and fluid flow behavior in astronauts have surfaced following thromboembolism reports. Our study explored regional volume distension and blood flow complexity in the IJV during progressive volume shifting. We observed stepwise volume distension and increasing flow dispersion with head-down tilting across all regions. Flow dispersion may pose a risk of future thromboembolism during prolonged volume shifts.


Asunto(s)
Inclinación de Cabeza , Venas Yugulares , Humanos , Venas Yugulares/fisiología , Venas Yugulares/diagnóstico por imagen , Masculino , Inclinación de Cabeza/fisiología , Adulto , Femenino , Volumen Sanguíneo/fisiología , Adulto Joven , Flujo Sanguíneo Regional/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Ultrasonografía/métodos
3.
NPJ Microgravity ; 10(1): 14, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316814

RESUMEN

The validity of venous ultrasound (V-US) for the diagnosis of deep vein thrombosis (DVT) during spaceflight is unknown and difficult to establish in diagnostic accuracy and diagnostic management studies in this context. We performed a systematic review of the use of V-US in the upper-body venous system in spaceflight to identify microgravity-related changes and the effect of venous interventions to reverse them, and to assess appropriateness of spaceflight V-US with terrestrial standards. An appropriateness tool was developed following expert panel discussions and review of terrestrial diagnostic studies, including criteria relevant to crew experience, in-flight equipment, assessment sites, ultrasound modalities, and DVT diagnosis. Microgravity-related findings reported as an increase in internal jugular vein (IJV) cross-sectional area and pressure were associated with reduced, stagnant, and retrograde flow. Changes were on average responsive to venous interventions using lower body negative pressure, Bracelets, Valsalva and Mueller manoeuvres, and contralateral IJV compression. In comparison with terrestrial standards, spaceflight V-US did not meet all appropriateness criteria. In DVT studies (n = 3), a single thrombosis was reported and only ultrasound modality criterion met the standards. In the other studies (n = 15), all the criteria were appropriate except crew experience criterion, which was appropriate in only four studies. Future practice and research should account for microgravity-related changes, evaluate individual effect of venous interventions, and adopt Earth-based V-US standards.

5.
Med Sci Sports Exerc ; 56(5): 927-932, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38115226

RESUMEN

PURPOSE: We evaluated whether repeated high-intensity interval exercise (HIIE) influences plasma oxytocin (OT) concentration in healthy men, and, given that OT is mainly synthesized in the hypothalamus, we assessed the concentration difference between the arterial (OT ART ) versus the internal jugular venous OT concentration (OT IJV ). Additionally, we hypothesized that an increase in cerebral OT release and the circulating concentration would be augmented by repeated HIIE. METHODS: Fourteen healthy men (age = 24 ± 2 yr; mean ± SD) performed two identical bouts of HIIE. These HIIE bouts included a warm-up at 50%-60% maximal workload ( Wmax ) for 5 min followed by four bouts of exercise at 80%-90% Wmax for 4 min interspersed by exercise at 50%-60% Wmax for 3 min. The HIIE bouts were separated by 60 min of rest. OT was evaluated in blood through radial artery and internal jugular vein catheterization. RESULTS: Both HIIE bouts increased both OT ART (median [IQR], from 3.9 [3.4-5.4] to 5.3 [4.4-6.3] ng·mL -1 in the first HIIE, P < 0.01) and OT IJV (from 4.6 [3.4-4.8] to 5.9 [4.3-8.2] ng·mL -1 , P < 0.01), but OT ART-IJV was unaffected (from -0.24 [-1.16 to 1.08] to 0.04 [-0.88 to 0.78] ng·mL -1 , P = 1.00). The increased OT levels were similar in the first and second HIIE bouts (OT ARTP = 0.25, OT IJVP = 0.36). CONCLUSIONS: Despite no change in the cerebral OT release via the internal jugular vein, circulating OT increases during HIIE regardless of the accumulated exercise volume, indicating that OT may play role as one of the exerkines.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Oxitocina , Adulto , Humanos , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Oxitocina/sangre , Ejercicio de Calentamiento
6.
NPJ Microgravity ; 9(1): 87, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057333

RESUMEN

Whole-body vibration (WBV) and resistive vibration exercise (RVE) are utilized as countermeasures against bone loss, muscle wasting, and physical deconditioning. The safety of the interventions, in terms of the risk of inducing undesired blood clotting and venous thrombosis, is not clear. We therefore performed the present systematic review of the available scientific literature on the issue. The review was conducted following the guidelines by the Space Biomedicine Systematic Review Group, based on Cochrane review guidelines. The relevant context or environment of the studies was "ground-based environment"; space analogs or diseased conditions were not included. The search retrieved 801 studies; 77 articles were selected for further consideration after an initial screening. Thirty-three studies met the inclusion criteria. The main variables related to blood markers involved angiogenic and endothelial factors, fibrinolysis and coagulation markers, cytokine levels, inflammatory and plasma oxidative stress markers. Functional and hemodynamic markers involved blood pressure measurements, systemic vascular resistance, blood flow and microvascular and endothelial functions. The available evidence suggests neutral or potentially positive effects of short- and long-term interventions with WBV and RVE on variables related to blood coagulation, fibrinolysis, inflammatory status, oxidative stress, cardiovascular, microvascular and endothelial functions. No significant warning signs towards an increased risk of undesired clotting and venous thrombosis were identified. If confirmed by further studies, WBV and RVE could be part of the countermeasures aimed at preventing or attenuating the muscular and cardiovascular deconditioning associated with spaceflights, permanence on planetary habitats and ground-based simulations of microgravity.

7.
Front Physiol ; 14: 1250744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501929

RESUMEN

[This corrects the article DOI: 10.3389/fphys.2023.1230752.].

9.
NPJ Microgravity ; 9(1): 17, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797288

RESUMEN

The recent incidental discovery of an asymptomatic venous thrombosis (VT) in the internal jugular vein of an astronaut on the International Space Station prompted a necessary, immediate response from the space medicine community. The European Space Agency formed a topical team to review the pathophysiology, risk and clinical presentation of venous thrombosis and the evaluation of its prevention, diagnosis, mitigation, and management strategies in spaceflight. In this article, we discuss the findings of the ESA VT Topical Team over its 2-year term, report the key gaps as we see them in the above areas which are hindering understanding VT in space. We provide research recommendations in a stepwise manner that build upon existing resources, and highlight the initial steps required to enable further evaluation of this newly identified pertinent medical risk.

10.
J Clin Med ; 11(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233725

RESUMEN

Lower body negative pressure (LBNP) has been implemented as a tool to simulate systemic effects of hypovolemia, understand orthostatic challenges and study G load stress in humans. However, the exact hemodynamic mechanisms of graded LBNP followed by its abrupt release have not been characterized in detail, limiting its potential applications in humans. Here, we set out to investigate the immediate hemodynamic alterations occurring during LBNP in healthy Landrace pigs. Invasive cardiac monitoring via extensive pressure volume loop analysis was carried out during application of incremental LBNP up to life threatening levels from -15 to -45 mmHg as well as during its abrupt release. Three different sealing positions were evaluated. Incremental LBNP consistently induced a preload dependent depression of systemic hemodynamics according to the Frank-Starling mechanism. Overall, the pressure-volume loop progressively shifted leftwards and downwards with increasing LBNP intensity. The abrupt release of LBNP reverted the above-described hemodynamic changes to baseline values within only three respiratory cycles. These data provide quantitative translational insights into hemodynamic mechanisms of incremental and very high levels of LBNP, levels of seal and effect of abrupt release for future human applications, such as countermeasure development for long spaceflight.

11.
Front Physiol ; 13: 885183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574486

RESUMEN

Background: The recent discovery of a venous thrombosis in the internal jugular vein of an astronaut has highlighted the need to predict the risk of venous thromboembolism in otherwise healthy individuals (VTE) in space. Virchow's triad defines the three classic risk factors for VTE: blood stasis, hypercoagulability, and endothelial disruption/dysfunction. Among these risk factors, venous endothelial disruption/dysfunction remains incompletely understood, making it difficult to accurately predict risk, set up relevant prophylactic measures and initiate timely treatment of VTE, especially in an extreme environment. Methods: A qualitative systematic review focused on endothelial disruption/dysfunction was conducted following the guidelines produced by the Space Biomedicine Systematic Review Group, which are based on Cochrane review guidelines. We aimed to assess the venous endothelial biochemical and imaging markers that may predict increased risk of VTE during spaceflight by surveying the existing knowledge base surrounding these markers in analogous populations to astronauts on the ground. Results: Limited imaging markers related to endothelial dysfunction that were outside the bounds of routine clinical practice were identified. While multiple potential biomarkers were identified that may provide insight into the etiology of endothelial dysfunction and its link to future VTE, insufficient prospective evidence is available to formally recommend screening potential astronauts or healthy patients with any currently available novel biomarker. Conclusion: Our review highlights a critical knowledge gap regarding the role biomarkers of venous endothelial disruption have in predicting and identifying VTE. Future population-based prospective studies are required to link potential risk factors and biomarkers for venous endothelial dysfunction to occurrence of VTE.

12.
J Appl Physiol (1985) ; 133(1): 20-26, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35546125

RESUMEN

Lower body negative pressure (LBNP) is a tool to study compensatory mechanisms to central hypovolemia for decades. However, the underlying hemodynamic mechanisms were mostly assessed noninvasively and remain unclear. We hypothesized that incremental LBNP reduces diastolic filling and thereby affects left ventricular (LV) diastolic suction (DS). Here, we investigated the impact of graded LBNP at three different levels of seal as well as during ß-adrenergic stimulation by invasive pressure-volume (PV) analysis. Eight Landrace pigs were instrumented closed-chest for PV assessment. LBNP was applied at three consecutive locations: I) cranial, 10 cm below xiphoid process; II) medial, half-way between cranial and caudal; III) caudal, at the iliac spine. Level III was repeated under dobutamine infusion. At each level, baseline measurements were followed by application of incremental LBNP of -15, -30, and -45 mmHg. LBNP induced varying degrees of preload-dependent hemodynamic changes, with cranial LBNP inducing more pronounced effects than caudal. According to the Frank-Starling mechanism, graded LBNP progressively reduced LV stroke volume (LV SV) following a decrease in LV end-diastolic volume. Negative intraventricular minimal pressures were observed during dobutamine-infusion as well as higher levels of LBNP. Of note, incremental LV negative pressures were accompanied by increasing DS volumes, derived by extrapolating the volume at zero transmural pressure, the so-called equilibrium volume (V0), related to LV SV. In conclusion, graded preload reduction via LBNP shifts the PV loop to smaller volumes and end-systolic volume below V0, which induces negative LV pressures and increases LV suction. Accordingly, LBNP-induced central hypovolemia is associated with increased DS.NEW & NOTEWORTHY This study examined the effects of incremental lower body negative pressure (LBNP) from -15 to -45 mmHg on hemodynamic regulation using invasive pressure-volume assessment in closed-chest pigs. Graded preload reduction via LBNP induces negative left ventricular (LV) pressures while increasing LV suction and thus allowing the ventricle to eject below the equilibrium volume at the end of systole. Accordingly, LBNP-induced central hypovolemia is associated with increased diastolic suction.


Asunto(s)
Presión Negativa de la Región Corporal Inferior , Función Ventricular Izquierda , Animales , Dobutamina , Hemodinámica , Hipovolemia , Volumen Sistólico/fisiología , Succión , Porcinos , Función Ventricular Izquierda/fisiología
13.
J Appl Physiol (1985) ; 132(1): 24-35, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762525

RESUMEN

Changes in the gravitational vector by postural changes or weightlessness induce fluid shifts, impacting ocular hemodynamics and regional pressures. This investigation explores the impact of changes in the direction of the gravitational vector on intraocular pressure (IOP), mean arterial pressure at eye level (MAPeye), and ocular perfusion pressure (OPP), which is critical for ocular health. Thirteen subjects underwent 360° of tilt (including both prone and supine positions) at 15° increments. At each angle, steady-state IOP and MAPeye were measured, and OPP calculated as MAPeye - IOP. Experimental data were also compared to a six-compartment lumped-parameter model of the eye. Mean IOP, MAPeye, and OPP significantly increased from 0° supine to 90° head-down tilt (HDT) by 20.7 ± 1.7 mmHg (P < 0.001), 38.5 ± 4.1 mmHg (P < 0.001), and 17.4 ± 3.2 mmHg (P < 0.001), respectively. Head-up tilt (HUT) significantly decreased OPP by 16.5 ± 2.5 mmHg (P < 0.001). IOP was significantly higher in prone versus supine position for much of the tilt range. Our study indicates that OPP is highly gravitationally dependent. Specifically, data show that MAPeye is more gravitationally dependent than IOP, thus causing OPP to increase during HDT and to decrease during HUT. In addition, IOP was elevated in prone position compared with supine position due to the additional hydrostatic column between the base of the rostral globe to the mid-coronal plane, supporting the notion that hydrostatic forces play an important role in ocular hemodynamics. Changes in OPP as a function of changes in gravitational stress and/or weightlessness may play a role in the pathogenesis of spaceflight-associated neuro-ocular syndrome.NEW & NOTEWORTHY Maintaining appropriate ocular perfusion pressure (OPP) is critical for ocular health. We measured the relative changes in intraocular and mean arterial pressures during 360° tilt and calculated OPP, which was elevated during head-down tilt and decreased during head-up tilt. Experimental data are also explained by our computational model. We demonstrate that OPP is more gravitationally dependent than previously recognized and may be a factor in the overall patho-etiology behind the weightlessness-induced spaceflight-associated neuro-ocular syndrome.


Asunto(s)
Presión Intraocular , Ingravidez , Presión Sanguínea , Inclinación de Cabeza , Humanos , Perfusión , Tonometría Ocular , Ingravidez/efectos adversos
14.
J Clin Monit Comput ; 36(5): 1355-1366, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34677821

RESUMEN

PURPOSE: Altered gravity environments introduce cardiovascular changes that may require continuous hemodynamic monitoring in both spaceflight and terrestrial analogs. Conditions in such environments are often prohibitive to direct/invasive methods and therefore, indirect measurement techniques must be used. This study compares two common cardiac measurement techniques used in the human spaceflight domain, pulse contour analysis (PCA-Nexfin) and inert gas rebreathing (IGR-Innocor), in subjects completing ergometer exercise under altered gravity conditions simulated using a tilt paradigm. METHODS: Seven subjects were tilted to three different angles representing Martian, Lunar, and microgravity conditions in the rostrocaudal direction. They completed a 36-min submaximal cardiovascular exercise protocol in each condition. Hemodynamics were continuously monitored using Nexfin and Innocor. RESULTS: Linear mixed-effects models revealed a significant bias of [Formula: see text] ml ([Formula: see text]) in stroke volume and [Formula: see text] l/min ([Formula: see text]) in cardiac output, with Nexfin measuring greater than Innocor in both variables. These values are in agreement with a Bland-Altman analysis. The correlation of stroke volume and cardiac output measurements between Nexfin and Innocor were [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively. CONCLUSION: There is a poor agreement in absolute stroke volume and cardiac output values between measurement via PCA (Nexfin) and IGR (Innocor) in subjects who are exercising in simulated altered gravity environments. These results suggest that the chosen measurement method and device greatly impacts absolute measurements of cardiac output. However, there is a good level of agreement between the two devices when measuring relative changes. Either of these devices seem adequate to capture cardiac changes, but should not be solely relied upon for accurate measurement of absolute cardiac output.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Gasto Cardíaco , Ejercicio Físico , Prueba de Esfuerzo/métodos , Humanos
16.
Acta Neurochir (Wien) ; 163(7): 1997-2004, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797628

RESUMEN

BACKGROUND: The standard lumbar puncture position involves maximum flexion of both lumbar and cervical spine. The cerebrospinal fluid opening pressure (CSFop) is measured in a horizontal position. This study investigated if flexion of hip and neck both separately and simultaneously influence intracranial pressure (ICP) to a clinically relevant extent. METHODS: Thirty-nine patients, undergoing invasive ICP monitoring as part of diagnostic work-up, were included. The patients underwent either a vertical postural examination (n = 24) or a horizontal postural examination (n = 15) to examine a varying degree of spine flexion. RESULTS: The vertical examination showed that ICP decreased by 15.2 mmHg when straightening the neck in a sitting lumbar puncture position (n = 24, IQR - 20.1 to - 9.7). In the horizontal examination, ICP increased in all but one patient when changing from supine position to lateral recumbent position (n = 15, median increase of 6.9 mmHg, IQR 3.1 to 9.9). Straightening the hips alone decreased ICP with 0.2 mmHg (n = 15, IQR - 0.5 to 2.0), while straightening the neck alone decreased ICP by 4.0 mmHg (n = 15, IQR - 5.9 to - 1.7). However, when straightening the hip and neck simultaneously ICP decreased by 6.4 mmHg (n = 6, IQR - 9.5 to - 4.4). CONCLUSIONS: Neck flexion alone, and neck flexion and hip flexion in combination, has significant confounding influence on ICP. This may cause patients to shift from a normal ICP range to a pathological ICP range, which will potentially affect treatment decisions. Consensus on guidelines for body position including neck and hip flexion measuring CSFop may be needed.


Asunto(s)
Presión Intracraneal , Humanos , Hipertensión Intracraneal , Postura , Rango del Movimiento Articular , Sedestación , Punción Espinal
17.
NPJ Microgravity ; 6(1): 38, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335101

RESUMEN

Mitigation of spaceflight-related pathologies such as spaceflight-associated neuro-ocular syndrome (SANS) and the recently discovered risk of venous thrombosis must happen before deep space exploration can occur. Lower body negative pressure (LBNP) can simulate gravitational stress during spaceflight that is likely to counteract SANS and venous thrombosis, but the ideal dose and method of delivery have yet to be determined. We undertook a review of current LBNP literature and conducted a gap analysis to determine the steps needed to adapt LBNP for in-flight use. We found that to use LBNP in flight, it must be adapted to long time duration/low pressure use that should be compatible with crew activities. A lack of understanding of the etiology of the pathologies that LBNP can counteract hinders the application of LBNP as a countermeasure during spaceflight. Future research should aim at filling the knowledge gaps outlined in this review.

18.
J Appl Physiol (1985) ; 129(5): 1220-1231, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32940563

RESUMEN

Astronauts have presented with a constellation of visual changes referred to as spaceflight-associated neuro-ocular syndrome (SANS). However, neither have early markers of microgravity-induced optic remodeling been fully identified nor have countermeasures been developed. To identify early markers of SANS, we studied 10 subjects with optical coherence tomography and ultrasonography when upright and supine and again after 24 h of 6° head-down tilt (HDT) bed rest. Upon acute transition from the upright to the supine position, choroid area (2.24 ± 0.53 to 2.28 ± 0.52 mm2, P = 0.001) and volume (9.51 ± 2.08 to 9.73 ± 2.08 mm3, P = 0.002) increased. After 24 h of HDT bed rest, subfoveal choroidal thickness (372 ± 93 to 381 ± 95 µm, P = 0.02), choroid area (2.25 ± 0.52 to 2.33 ± 0.54 mm2, P = 0.08), and volume (9.64 ± 2.03 to 9.82 ± 2.08 mm3, P = 0.08) increased relative to the supine position. Subsequently, seven subjects spent 3 days in -6°HDT bed rest to assess whether low-level lower body negative pressure (LBNP) could prevent the observed choroidal engorgement during bed rest. Maintaining the -6° HDT position for 3 days caused choroid area (Δ0.11 mm2, P = 0.05) and volume (Δ0.45 mm3, P = 0.003) to increase. When participants also spent 8 h daily under -20 mmHg LBNP, choroid volume still increased, but substantially (40%) less than in the control trial (Δ0.27 mm3, P = 0.05). Moreover, the increase in choroid area was diminished (Δ0.03 mm2, P = 0.13), indicating that low-level LBNP attenuates the choroid expansion associated with 3 days of -6° HDT bed rest. These data suggest that low-level LBNP may be an effective countermeasure for SANS.NEW & NOTEWORTHY Choroid measurements appear to be sensitive to changes in gravitational gradients, as well as periods of head-down tilt (HDT) bed rest, suggesting that they are potential indicators of early ocular remodeling and could serve to evaluate the efficacy of countermeasures for SANS. Eight hours of lower body negative pressure (LBNP) daily attenuates the choroid expansion associated with 3 days of strict -6° HDT bed rest, indicating that LBNP may be an effective countermeasure for SANS.


Asunto(s)
Reposo en Cama , Inclinación de Cabeza , Reposo en Cama/efectos adversos , Transferencias de Fluidos Corporales , Humanos , Presión Negativa de la Región Corporal Inferior , Simulación de Ingravidez
19.
J Appl Physiol (1985) ; 129(4): 901-908, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816640

RESUMEN

We sought to determine whether gravity-induced changes in intracranial pressure influence cerebral blood flow regulation. Accordingly, nine young healthy men were studied while supine (0°) and during mild changes in hydrostatic pressure induced by head-up tilt at +20° and +10° (HUT+20 and HUT+10) and head-down tilt at -20° and -10° (HDT-20, HDT-10). Blood flows were measured in the internal and external carotid and vertebral arteries (ICA, ECA, and VA). Intraocular pressure (IOP) was measured as an indicator of hydrostatic changes in intracranial pressure. A posture change from HUT+20 to HDT-20 increased IOP by +5.1 ± 1.9 mmHg (P < 0.001) and ECA blood flow (from 61.7 ± 26.1 to 87.6 ± 46.4 mL/min, P = 0.004) but did not affect ICA (P = 0.528) or VA (P = 0.101) blood flow. The increase in ECA flow correlated with the tilt angle and resultant changes in intracranial pressures (by IOP), thus indicating a passive hydrostatic gravitational dependence (r = 0.371, P = 0.012). On the contrary, ICA flow remained constant and thus well protected against moderate orthostatic stress. When ICA flow was corrected for the gravitational changes in intracranial pressures (by IOP), it demonstrated the same magnitude of gravitational dependence as ECA. These findings suggest that passive hydrostatic increases in intracranial pressure outbalance the concurrent increase in arterial feeding pressure to the brain and thus prevent cerebral hyperperfusion during HDT. The mechanism for maintaining constant cerebral flow was by increased ECA flow, thus supporting the role of these vascular beds as a shunting pathway.NEW & NOTEWORTHY We investigated whether gravity-induced changes in intracranial pressure influence cerebral blood flow regulation in young men. We recorded extra- and intracerebral blood flow during changes in posture, and data indicate that the external carotid artery may serve as an overflow pathway to prevent cerebral hyperperfusion during increases in cerebral arterial blood pressure.


Asunto(s)
Arteria Carótida Externa , Presión Intracraneal , Presión Sanguínea , Circulación Cerebrovascular , Inclinación de Cabeza , Hemodinámica , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...