Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Periodontol 2000 ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031969

RESUMEN

The oral microbiota develops within the first 2 years of childhood and becomes distinct from the parents by 4 years-of-age. The oral microbiota plays an important role in the overall health/symbiosis of the individual. Deviations from the state of symbiosis leads to dysbiosis and an increased risk of pathogenicity. Deviations can occur not only from daily life activities but also from orthodontic interventions. Orthodontic appliances are formed from a variety of biomaterials. Once inserted, they serve as a breeding ground for microbial attachment, not only from new surface areas and crevices but also from material physicochemical interactions different than in the symbiotic state. Individuals undergoing orthodontic treatment show, compared with untreated people, qualitative and quantitative differences in activity within the oral microbiota, induced by increased retention of supra- and subgingival microbial plaque throughout the treatment period. These changes are at the root of the main undesirable effects, such as gingivitis, white spot lesions (WSL), and more severe caries lesions. Notably, the oral microbiota profile in the first weeks of orthodontic intervention might be a valuable indicator to predict and identify higher-risk individuals with respect to periodontal health and caries risk within an otherwise healthy population. Antimicrobial coatings have been used to dissuade microbes from adhering to the biomaterial; however, they disrupt the host microbiota, and several bacterial strains have become resistant. Smart biomaterials that can reduce the antimicrobial load preventing microbial adhesion to orthodontic appliances have shown promising results, but their complexity has kept many solutions from reaching the clinic. 3D printing technology provides opportunities for complex chemical syntheses to be performed uniformly, reducing the cost of producing smart biomaterials giving hope that they may reach the clinic in the near future. The purpose of this review is to emphasize the importance of the oral microbiota during orthodontic therapy and to use innovative technologies to better maintain its healthy balance during surgical procedures.

2.
J Colloid Interface Sci ; 672: 224-235, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838630

RESUMEN

Hybrid-nanozymes are promising in various applications, but comprehensive comparison of hybrid-nanozymes composed of single-atoms or nanoparticles on the same support has never been made. Here, manganese-oxide nanosheets were loaded with Pt-single-atoms or differently-sized nanoparticles and their oxidase- and-peroxidase activities compared. High-resolution Transmission-Electron-Microscopy and corresponding Fast Fourier Transform imaging showed that Pt-nanoparticles (1.5 nm diameter) had no clear (111) crystal-planes, while larger nanoparticles had clear (111) crystal-planes. X-ray Photo-electron Spectroscopy demonstrated that unloaded nanosheets were composed of MnO2 with a high number of oxygen vacancies (Vo/Mn 0.4). Loading with 7.0 nm Pt-nanoparticles induced a change to Mn2O3, while loading with 1.5 nm nanoparticles increased the number of vacancies (Vo/Mn 1.2). Nanosheets loaded with 3.0 nm Pt-nanoparticles possessed similarly high catalytic activities as Pt-single-atoms. However, loading with 1.5 nm or 7.0 nm Pt-nanoparticles yielded lower catalytic activities. A model is proposed explaining the low catalytic activity of under- and over-sized Pt-nanoparticles as compared with intermediately-sized (3.0 nm) Pt-nanoparticles and single-atoms. Herewith, catalytic activities of hybrid-nanozymes composed of single-atoms and intermediately-sized nanoparticles are put a par, as confirmed here with respect to bacterial biofilm eradication. This conclusion facilitates a balanced choice between using Pt-single-atoms or nanoparticles in further development and application of hybrid-nanozymes.

3.
J Nucl Cardiol ; 36: 101862, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608861

RESUMEN

BACKGROUND: LV geometry with shape index (SI) and eccentricity index (EI) measured by myocardial perfusion positron emission tomography/computed tomography (PET/CT) may allow the evaluation of left ventricular (LV) adverse remodeling. This first study aims to explore the relationship of SI and EI values acquired by Nitrogen-13 ammonia PET/CT in patients with normal perfusion, ischemia, and myocardial infarction. And evaluate the correlations between the variables of LV geometry, and with the variables of LV function. METHODS AND RESULTS: One hundred and forty patients who underwent an electrocardiogram (ECG)-gated PET/CT were selected and classified into 4 groups according to ischemia or infarction burden (normal perfusion, mild ischemia, moderate-severe ischemia, and infarction). The variables were automatically retrieved using dedicated software (QPS/QGS; Cedars-Sinai, Los Angeles, CA, USA). On multicomparison analysis (one-way ANOVA and Dunnett's Test), subjects in the infarction group had significant higher values of SI end-diastolic rest (P < 0.001), and stress (P = 0.003), SI end-systolic rest (P = 0.002) and stress (P < 0.001) as well as statistically significant lower values of EI rest (P < 0.001) and stress (P < 0.001) when compared with all other groups. Regarding Pearson correlation, in the infarcted group all the variables of SI and EI were significantly correlated (P < 0.001) with strong correlation coefficients (>0.60). SI end-systolic correlated significantly with the variables of LV function independently of the group of patients (P < 0.05). CONCLUSIONS: Shape and eccentricity indices differ in patients with myocardial infarction as compared to patients with ischemia or normal perfusion. This encourage further research in their potential for detecting LV adverse remodeling.


Asunto(s)
Amoníaco , Electrocardiografía , Ventrículos Cardíacos , Infarto del Miocardio , Isquemia Miocárdica , Imagen de Perfusión Miocárdica , Radioisótopos de Nitrógeno , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano , Imagen de Perfusión Miocárdica/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/fisiopatología , Radiofármacos , Técnicas de Imagen Sincronizada Cardíacas , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...