Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873286

RESUMEN

When interacting with their environment, animals must balance exploratory and defensive behavior to evaluate and respond to potential threats. The lateral septum (LS) is a structure in the ventral forebrain that calibrates the magnitude of behavioral responses to stress-related external stimuli, including the regulation of threat avoidance. The complex connectivity between the LS and other parts of the brain, together with its largely unexplored neuronal diversity, makes it difficult to understand how defined LS circuits control specific behaviors. Here, we describe a mouse model in which a population of neurons with a common developmental origin (Nkx2.1-lineage neurons) are absent from the LS. Using a combination of circuit tracing and behavioral analyses, we found that these neurons receive inputs from the perifornical area of the anterior hypothalamus (PeFAH) and are specifically activated in stressful contexts. Mice lacking Nkx2.1-lineage LS neurons display increased exploratory behavior even under stressful conditions. Our study extends the current knowledge about how defined neuronal populations within the LS can evaluate contextual information to select appropriate behavioral responses. This is a necessary step towards understanding the crucial role that the LS plays in neuropsychiatric conditions where defensive behavior is dysregulated, such as anxiety and aggression disorders.

2.
Nat Neurosci ; 23(11): 1433-1443, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958923

RESUMEN

Understanding how genes, drugs and neural circuits influence behavior requires the ability to effectively organize information about similarities and differences within complex behavioral datasets. Motion Sequencing (MoSeq) is an ethologically inspired behavioral analysis method that identifies modular components of three-dimensional mouse body language called 'syllables'. Here, we show that MoSeq effectively parses behavioral differences and captures similarities elicited by a panel of neuroactive and psychoactive drugs administered to a cohort of nearly 700 mice. MoSeq identifies syllables that are characteristic of individual drugs, a finding we leverage to reveal specific on- and off-target effects of both established and candidate therapeutics in a mouse model of autism spectrum disorder. These results demonstrate that MoSeq can meaningfully organize large-scale behavioral data, illustrate the power of a fundamentally modular description of behavior and suggest that behavioral syllables represent a new class of druggable target.


Asunto(s)
Técnicas de Observación Conductual/métodos , Conducta Animal , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Reconocimiento de Normas Patrones Automatizadas/métodos , Grabación en Video
3.
Cell ; 174(1): 44-58.e17, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29779950

RESUMEN

Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.


Asunto(s)
Conducta Animal , Cuerpo Estriado/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Calcio/metabolismo , Cuerpo Estriado/efectos de los fármacos , Electrodos Implantados , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fotometría , Receptores de Dopamina D1/deficiencia , Receptores de Dopamina D1/genética
4.
Nat Neurosci ; 20(8): 1180-1188, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628101

RESUMEN

Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Fibras Ópticas , Estimulación Luminosa , Animales , Femenino , Masculino , Ratones Transgénicos , Optogenética/métodos , Estimulación Luminosa/métodos , Rodopsina/genética
5.
Neuron ; 88(6): 1121-1135, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26687221

RESUMEN

Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior.


Asunto(s)
Conducta Animal , Imagenología Tridimensional/métodos , Cinésica , Aprendizaje Automático , Optogenética/métodos , Animales , Simulación por Computador , Imagenología Tridimensional/instrumentación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/instrumentación
6.
J Clin Endocrinol Metab ; 87(7): 3084-9, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12107205

RESUMEN

A 48-yr-old woman was evaluated 21 yr after receiving treatment for an ACTH-secreting metastatic pituitary carcinoma. She had been diagnosed with Cushing's disease 35 yr earlier at the age of 14 yr and had undergone bilateral adrenalectomy. Six years later she developed Nelson's syndrome, which was treated with resection of a pituitary adenoma followed by radiotherapy to the sella turcica. Eight years later she was found to have craniospinal metastases with three remote intracerebral lesions. Two of these lesions were surgically resected and stained positive for ACTH by immunofluorescence. She subsequently received whole-brain radiotherapy and is doing well 21 yr later with no lesions seen on magnetic resonance imaging and no evidence of recurrent metastatic disease. We present this case in detail along with a literature review of ACTH-secreting pituitary carcinoma.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Carcinoma/metabolismo , Neoplasias Hipofisarias/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma/diagnóstico , Carcinoma/secundario , Carcinoma/cirugía , Terapia Combinada , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/secundario , Neoplasias Hipofisarias/cirugía , Radioterapia , Análisis de Supervivencia , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA