Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 346: 140535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923018

RESUMEN

The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.


Asunto(s)
Fungicidas Industriales , Maneb , Plaguicidas , Zineb , Humanos , Maneb/toxicidad , Manganeso/toxicidad , Manganeso/metabolismo , Plaguicidas/toxicidad , Zineb/toxicidad , Fungicidas Industriales/toxicidad , Fungicidas Industriales/análisis , Apoptosis , Estrés Oxidativo , Zinc/metabolismo , Hepatocitos/metabolismo , Etilenos , Homeostasis
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173051

RESUMEN

Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.


Asunto(s)
Citrulina/farmacología , Mitocondrias/metabolismo , Sepsis/tratamiento farmacológico , Animales , Arginina/deficiencia , Arginina/metabolismo , Disponibilidad Biológica , Citrulina/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Tolerancia Inmunológica/inmunología , Terapia de Inmunosupresión/métodos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Sepsis/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología
3.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003741

RESUMEN

Hepatitis B virus (HBV) contains a 3.2 kb DNA genome and causes acute and chronic hepatitis. HBV infection is a global health problem, with 350 million chronically infected people at increased risk of developing liver disease and hepatocellular carcinoma (HCC). Methylation of HBV DNA in a CpG context (5mCpG) can alter the expression patterns of viral genes related to infection and cellular transformation. Moreover, it may also provide clues as to why certain infections are cleared or persist with or without progression to cancer. The detection of 5mCpG often requires techniques that damage DNA or introduce bias through a myriad of limitations. Therefore, we developed a method for the detection of 5mCpG on the HBV genome that does not rely on bisulfite conversion or PCR. With Cas9-guided RNPs to specifically target the HBV genome, we enriched in HBV DNA from primary human hepatocytes (PHHs) infected with different HBV genotypes, as well as enriching in HBV from infected patient liver tissue, followed by sequencing with Oxford Nanopore Technologies MinION. Detection of 5mCpG by nanopore sequencing was benchmarked with bisulfite-quantitative methyl-specific qPCR (BS-qMSP). The 5mCpG levels in HBV determined by BS-qMSP and nanopore sequencing were highly correlated. Our nanopore sequencing approach achieved a coverage of ~2000× of HBV depending on infection efficiency, sufficient coverage to perform a de novo assembly and detect small fluctuations in HBV methylation, providing the first de novo assembly of native HBV DNA, as well as the first landscape of 5mCpG from native HBV sequences. Moreover, by capturing entire HBV genomes, we explored the epigenetic heterogeneity of HBV in infected patients and identified four epigenetically distinct clusters based on methylation profiles. This method is a novel approach that enables the enrichment of viral DNA in a mixture of nucleic acid material from different species and will serve as a valuable tool for infectious disease monitoring.


Asunto(s)
Sistemas CRISPR-Cas , Epigenómica , Heterogeneidad Genética , Genoma Viral , Virus de la Hepatitis B/genética , Secuenciación de Nanoporos/métodos , Proteína 9 Asociada a CRISPR , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Metilación de ADN , ADN Viral/genética , Genotipo , Virus de la Hepatitis B/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Nanoporos , Análisis de Secuencia de ADN , Sulfitos
4.
Sensors (Basel) ; 19(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096615

RESUMEN

Human hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells. Interestingly, differentiated hepatocyte-like HepaRG cells expressed GFP at higher levels than cholangiocyte-like cells. Despite weaker inductions of GFP expression compared to the strong increases in mRNA levels of endogenous genes, we also demonstrated that the biosensor transgenes were induced by prototypical drug inducers benzo(a)pyrene and phenobarbital. In addition, we used the differentiated biosensor HepaRG cells to evidence that pesticide mancozeb triggered selective cytotoxicity of hepatocyte-like cells. Our data demonstrate that these new biosensor HepaRG cells have potential applications in the field of chemicals safety evaluation and the assessment of drug hepatotoxicity.


Asunto(s)
Técnicas Biosensibles , Citocromo P-450 CYP1A1/aislamiento & purificación , Citocromo P-450 CYP2B6/aislamiento & purificación , Citocromo P-450 CYP3A/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Proteínas Fluorescentes Verdes/genética , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Lentivirus/genética , Tasa de Depuración Metabólica , Transgenes/genética
5.
Hepatol Commun ; 2(3): 254-269, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29507901

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a deadly liver primary cancer associated with poor prognosis and limited therapeutic opportunities. Active transforming growth factor beta (TGFß) signaling is a hallmark of the iCCA microenvironment. However, the impact of TGFß on the transcriptome of iCCA tumor cells has been poorly investigated. Here, we have identified a specific TGFß signature of genes commonly deregulated in iCCA cell lines, namely HuCCT1 and Huh28. Novel coding and noncoding TGFß targets were identified, including a TGFß-induced long noncoding RNA (TLINC), formerly known as cancer susceptibility candidate 15 (CASC15). TLINC is a general target induced by TGFß in hepatic and nonhepatic cell types. In iCCA cell lines, the expression of a long and short TLINC isoform was associated with an epithelial or mesenchymal phenotype, respectively. Both isoforms were detected in the nucleus and cytoplasm. The long isoform of TLINC was associated with a migratory phenotype in iCCA cell lines and with the induction of proinflammatory cytokines, including interleukin 8, both in vitro and in resected human iCCA. TLINC was also identified as a tumor marker expressed in both epithelial and stroma cells. In nontumor livers, TLINC was only expressed in specific portal areas with signs of ductular reaction and inflammation. Finally, we provide experimental evidence of circular isoforms of TLINC, both in iCCA cells treated with TGFß and in resected human iCCA. Conclusion: We identify a novel TGFß-induced long noncoding RNA up-regulated in human iCCA and associated with an inflammatory microenvironment. (Hepatology Communications 2018;2:254-269).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...