Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 183: 109242, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32097814

RESUMEN

Recent studies indicate that exposure to airborne particulate matter (PM) is associated with cognitive delay, depression, anxiety, autism, and neurodegenerative diseases; however, the role of PM in the etiology of these outcomes is not well-understood. Therefore, there is a need for controlled animal studies to better elucidate the causes and mechanisms by which PM impacts these health outcomes. We assessed the effects of gestational and early life exposure to traffic-related PM on social- and anxiety-related behaviors, cognition, inflammatory markers, and neural integrity in juvenile male rats. Gestating and lactating rats were exposed to PM from a Boston (MA, USA) traffic tunnel for 5 h/day, 5 days/week for 6 weeks (3 weeks gestation, 3 weeks lactation). The target exposure concentration for the fine fraction of nebulized PM, measured as PM2.5, was 200 µg/m3. To assess anxiety and cognitive function, F1 male juveniles underwent elevated platform, cricket predation, nest building, social behavior and marble burying tests at 32-60 days of age. Upon completion of behavioral testing, multiple cytokines and growth factors were measured in these animals and their brains were analyzed with diffusion tensor MRI to assess neural integrity. PM exposure had no effect on litter size or weight, or offspring growth; however, F1 litters developmentally exposed to PM exhibited significantly increased anxiety (p = 0.04), decreased cognition reflected in poorer nest-organization (p = 0.04), and decreased social play and allogrooming (p = 0.003). MRI analysis of ex vivo brains revealed decreased structural integrity of neural tissues in the anterior cingulate and hippocampus in F1 juveniles exposed to PM (p < 0.01, p = 0.03, respectively). F1 juvenile males exposed to PM also exhibited significantly decreased plasma levels of both IL-18 (p = 0.03) and VEGF (p = 0.04), and these changes were inversely correlated with anxiety-related behavior. Chronic exposure of rat dams and their offspring to traffic-related PM during gestation and lactation decreases social behavior, increases anxiety, impairs cognition, decreases levels of inflammatory and growth factors (which are correlated with behavioral changes), and disrupts neural integrity in the juvenile male offspring. Our findings add evidence that exposure to traffic-related air pollution during gestation and lactation is involved in the etiology of autism spectrum disorder and other disorders which include social and cognitive deficits and/or increased anxiety.


Asunto(s)
Ansiedad , Trastorno del Espectro Autista , Sistema Nervioso , Material Particulado , Emisiones de Vehículos , Animales , Ansiedad/etiología , Trastorno del Espectro Autista/epidemiología , Boston , Modelos Animales de Enfermedad , Femenino , Inflamación , Lactancia , Masculino , Sistema Nervioso/efectos de los fármacos , Material Particulado/toxicidad , Ratas , Roedores , Conducta Social , Emisiones de Vehículos/toxicidad
2.
Inhal Toxicol ; 31(9-10): 368-375, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31762350

RESUMEN

OBJECTIVES: Rodents used in scientific research are typically housed in cages containing natural bedding materials. Despite extensive evidence of biological harm from inhaled particulate matter (PM), relatively little work has been performed to measure bedding-generated PM exposure in caged animals used in basic science research. Our objectives were to determine whether bedding-generated PM was present in significant concentrations in rodent cages and to identify the main factors affecting the accumulation and attenuation of bedding-generated PM inside cages. MATERIALS AND METHODS: We measured PM2.5 concentrations in cages containing common bedding materials (pine, aspen, paper, and corncob) with filter top isolator absent or present on the cages. PM2.5 concentrations were monitored with rats inside cages as well as during artificial manipulation of the bedding (designed to simulate rodent activity). RESULTS AND DISCUSSION: Upon rodent digging or mechanical/manual stirring, all four bedding materials produced significant increases in PM2.5 concentrations (as much as 100-200 µg/m3 PM2.5, 50- to 100-fold higher than during periods of no rodent activity), and concentrations in cages fitted with filter tops were an order of magnitude higher than in cages without filter tops. Elevated concentrations were sustained for longer durations in cages with filter tops (5-10 minutes) compared to cages with only bar lids (0-2 minutes). CONCLUSIONS: These results indicate that standard laboratory housing conditions can expose rodents to substantial levels of PM2.5. Bedding-generated PM has potential implications as an environmental agent in rodent studies.


Asunto(s)
Pisos y Cubiertas de Piso , Vivienda para Animales , Material Particulado , Animales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...