Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 15848, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985567

RESUMEN

A combined study of local structural, electric and ferroelectric properties of SrTiO[Formula: see text]/La[Formula: see text]Sr[Formula: see text]MnO[Formula: see text]/BaTiO[Formula: see text] heterostructures was performed by Piezoresponse Force Microscopy, tunneling Atomic Force Microscopy and Scanning Tunneling Microscopy in the temperature range 30-295 K. The direct correlation of film structure (epitaxial, nanocrystalline or polycrystalline) with local electric and ferroelectric properties was observed. For polycrystalline ferroelectric films the predominant polarization state is defined by the peculiarity of screening the built-in field by positively charged point defects. Based on Scanning Tunneling Spectroscopy results, it was found that a sequent voltage application provokes the modification of local resistive properties related to the redistribution of point defects in thin ferroelectric films. A qualitative analysis of acquired Piezoresponse Force Microscopy, tunneling Atomic Force Microscopy and Scanning Tunneling Microscopy images together with Scanning Tunneling Spectroscopy measurements enabled us to conclude that in the presence of structural defects the competing processes of electron injection, trap filling and the drift of positively charged point defects drives the change of resistive properties of thin films under applied electric field. In this paper, we propose a new approach based on Scanning Tunneling Microscopy/Spectroscopy under ultrahigh vacuum conditions to clarify the influence of point defects on local resistive properties of nanometer-thick ferroelectric films.

2.
Rep Prog Phys ; 75(7): 076502, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22790779

RESUMEN

The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.


Asunto(s)
Equipos de Almacenamiento de Computador , Óxidos/química , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación
3.
Nanotechnology ; 19(37): 375703, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-21832557

RESUMEN

Ferroelectric nanodomains were created in BaTiO(3) thin films by applying a voltage to a sharp conducting tip of a scanning force microscope (SFM). The films were epitaxially grown on SrRuO(3)-covered (001)-oriented SrTiO(3) substrates by a high-pressure sputtering. They appeared to be single-crystalline with the (001) crystallographic orientation relative to the substrate. Using the piezoresponse mode of the SFM to detect the out-of-plane film polarization, the domain sizes were measured as a function of the applied writing voltage and the pulse time. It was found that the time dependence of the domain diameter in a 60 nm thick BaTiO(3) film deviates significantly from the logarithmic law observed earlier in Pb(Zr(0.2)Ti(0.8))O(3) (PZT) films. At a given writing time, the domain size increases nonlinearly with increasing applied voltage, in contrast to the linear behavior reported earlier for PZT films and LiNbO(3) single crystals. The dynamics of domain growth is analyzed theoretically taking into account the strong inhomogeneity of the external electric field in the film and the influence of the bottom electrode. It is shown that the observed writing time and voltage dependences of the domain size can be explained by the domain-wall creep in the presence of random-bond disorder.

4.
Opt Lett ; 28(24): 2527-9, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14690136

RESUMEN

Good-quality polycrystalline BaTiO3 thin films are deposited on MgO substrates by pulsed laserdeposition. The deposition parameters are optimized to achieve optical-quality films with an attenuation coefficient of 4 dB/cm at the 633-nm wavelength. Thin-film electro-optic Mach-Zehnder modulators are fabricated with standard lithography and ion-beam etching. The waveguides patterned by lithography are the ridge type, and they ensure single-mode propagation in the wavelength range of 633-1550 nm. An electro-optic coefficient of 22 pm/V is estimated for the polycrystalline BaTiO3 films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...