Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38830143

RESUMEN

Untargeted tandem mass spectrometry (MS/MS) has become a high-throughput method to measure small molecules in complex samples. One key goal is the transformation of these MS/MS spectra into chemical structures. Computational techniques such as MS/MS library search have enabled the reidentification of known compounds. Analog library search and molecular networking extend this identification to unknown compounds. While there have been advancements in metrics for the similarity of MS/MS spectra of structurally similar compounds, there is still a lack of automated methods to provide site specific information about structural modifications. Here we introduce ModiFinder which leverages the alignment of peaks in MS/MS spectra between structurally related known and unknown small molecules. Specifically, ModiFinder focuses on shifted MS/MS fragment peaks in the MS/MS alignment. These shifted peaks putatively represent substructures of the known molecule that contain the site of the modification. ModiFinder synthesizes this information together and scores the likelihood for each atom in the known molecule to be the modification site. We demonstrate in this manuscript how ModiFinder can effectively localize modifications which extends the capabilities of MS/MS analog searching and molecular networking to accelerate the discovery of novel compounds.

2.
Nat Protoc ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769143

RESUMEN

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.

3.
PLoS One ; 19(5): e0303273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781236

RESUMEN

Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.


Asunto(s)
Metabolómica , Metabolómica/métodos , Sudáfrica , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Depsipéptidos/biosíntesis , Depsipéptidos/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
4.
Mol Cell Proteomics ; 23(6): 100779, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38679388

RESUMEN

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.

5.
Sci Rep ; 14(1): 7885, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570698

RESUMEN

SbtB is a PII-like protein that regulates the carbon-concentrating mechanism (CCM) in cyanobacteria. SbtB proteins can bind many adenyl nucleotides and possess a characteristic C-terminal redox sensitive loop (R-loop) that forms a disulfide bridge in response to the diurnal state of the cell. SbtBs also possess an ATPase/ADPase activity that is modulated by the redox-state of the R-loop. To investigate the R-loop in the cyanobacterium Synechocystis sp. PCC 6803, site-specific mutants, unable to form the hairpin and permanently in the reduced state, and a R-loop truncation mutant, were characterized under different inorganic carbon (Ci) and light regimes. Growth under diurnal rhythm showed a role of the R-loop as sensor for acclimation to changing light conditions. The redox-state of the R-loop was found to impact the binding of the adenyl-nucleotides to SbtB, its membrane association and thereby the CCM regulation, while these phenotypes disappeared after truncation of the R-loop. Collectively, our data imply that the redox-sensitive R-loop provides an additional regulatory layer to SbtB, linking the CO2-related signaling activity of SbtB with the redox state of cells, mainly reporting the actual light conditions. This regulation not only coordinates CCM activity in the diurnal rhythm but also affects the primary carbon metabolism.


Asunto(s)
Carbono , Synechocystis , Carbono/metabolismo , Estructuras R-Loop , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nucleótidos/metabolismo , Oxidación-Reducción , Dióxido de Carbono/metabolismo , Fotosíntesis
6.
Chemosphere ; 355: 141782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548083

RESUMEN

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Ambientales , Ecosistema , Estuarios , Bahías , Ríos/química , Agricultura , Preparaciones Farmacéuticas
7.
Nat Prod Rep ; 41(6): 885-904, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38351834

RESUMEN

Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.


Asunto(s)
Productos Biológicos , Metaboloma , Metabolómica , Fenotipo , Productos Biológicos/metabolismo , Productos Biológicos/química , Metabolómica/métodos , Espectrometría de Masas/métodos , Estructura Molecular
8.
J Nat Prod ; 87(4): 692-704, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38385767

RESUMEN

The marine sponge-derived fungus Stachylidium bicolor 293 K04 is a prolific producer of specialized metabolites, including certain cyclic tetrapeptides called endolides, which are characterized by the presence of the unusual amino acid N-methyl-3-(3-furyl)-alanine. This rare feature can be used as bait to detect new endolide-like analogs through customized fragment pattern searches of tandem mass spectrometry data using the Mass Spec Query Language (MassQL). Here, we integrate endolide-specific MassQL queries with molecular networking to obtain substructural information guiding the targeted isolation and structure elucidation of the new proline-containing endolides E (1) and F (2). We showed that endolide F (but not E) is a moderate antagonist of the arginine vasopressin V1A receptor, a member of the G protein-coupled receptor superfamily.


Asunto(s)
Péptidos Cíclicos , Poríferos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Estructura Molecular , Animales , Poríferos/química , Espectrometría de Masas en Tándem , Biología Marina
9.
Nat Commun ; 14(1): 8488, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123557

RESUMEN

Despite the increasing availability of tandem mass spectrometry (MS/MS) community spectral libraries for untargeted metabolomics over the past decade, the majority of acquired MS/MS spectra remain uninterpreted. To further aid in interpreting unannotated spectra, we created a nearest neighbor suspect spectral library, consisting of 87,916 annotated MS/MS spectra derived from hundreds of millions of MS/MS spectra originating from published untargeted metabolomics experiments. Entries in this library, or "suspects," were derived from unannotated spectra that could be linked in a molecular network to an annotated spectrum. Annotations were propagated to unknowns based on structural relationships to reference molecules using MS/MS-based spectrum alignment. We demonstrate the broad relevance of the nearest neighbor suspect spectral library through representative examples of propagation-based annotation of acylcarnitines, bacterial and plant natural products, and drug metabolism. Our results also highlight how the library can help to better understand an Alzheimer's brain phenotype. The nearest neighbor suspect spectral library is openly available for download or for data analysis through the GNPS platform to help investigators hypothesize candidate structures for unknown MS/MS spectra in untargeted metabolomics data.


Asunto(s)
Acceso a la Información , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Biblioteca de Genes , Análisis por Conglomerados
10.
Proteomics ; : e2200533, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929699

RESUMEN

With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.

12.
Nat Commun ; 14(1): 7842, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030603

RESUMEN

Antibiotics are central to modern medicine, and yet they are mainly the products of intra and inter-kingdom evolutionary warfare. To understand how nature evolves antibiotics around a common mechanism of action, we investigated the origins of an extremely valuable class of compounds, lipid II targeting glycopeptide antibiotics (GPAs, exemplified by teicoplanin and vancomycin), which are used as last resort for the treatment of antibiotic resistant bacterial infections. Using a molecule-centred approach and computational techniques, we first predicted the nonribosomal peptide synthetase assembly line of paleomycin, the ancestral parent of lipid II targeting GPAs. Subsequently, we employed synthetic biology techniques to produce the predicted peptide and validated its antibiotic activity. We revealed the structure of paleomycin, which enabled us to address how nature morphs a peptide antibiotic scaffold through evolution. In doing so, we obtained temporal snapshots of key selection domains in nonribosomal peptide synthesis during the biosynthetic journey from ancestral, teicoplanin-like GPAs to modern GPAs such as vancomycin. Our study demonstrates the synergy of computational techniques and synthetic biology approaches enabling us to journey back in time, trace the temporal evolution of antibiotics, and revive these ancestral molecules. It also reveals the optimisation strategies nature has applied to evolve modern GPAs, laying the foundation for future efforts to engineer this important class of antimicrobial agents.


Asunto(s)
Antibacterianos , Glicopéptidos , Antibacterianos/farmacología , Glicopéptidos/química , Teicoplanina/química , Teicoplanina/farmacología , Vancomicina/farmacología , Péptidos
13.
ISME J ; 17(12): 2147-2159, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857709

RESUMEN

Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental systems.


Asunto(s)
Metabolómica , Microbiota , Espectrometría de Masas
14.
Commun Biol ; 6(1): 896, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653089

RESUMEN

The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.


Asunto(s)
Antozoos , Microbiota , Algas Marinas , Animales , Arrecifes de Coral , Simbiosis , Metaboloma
15.
Anal Chem ; 95(34): 12673-12682, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578818

RESUMEN

Non-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely used tool for metabolomics analysis, enabling the detection and annotation of small molecules in complex environmental samples. Data-dependent acquisition (DDA) of product ion spectra is thereby currently one of the most frequently applied data acquisition strategies. The optimization of DDA parameters is central to ensuring high spectral quality, coverage, and number of compound annotations. Here, we evaluated the influence of 10 central DDA settings of the Q Exactive mass spectrometer on natural organic matter samples from ocean, river, and soil environments. After data analysis with classical and feature-based molecular networking using MZmine and GNPS, we compared the total number of network nodes, multivariate clustering, and spectrum quality-related metrics such as annotation and singleton rates, MS/MS placement, and coverage. Our results show that automatic gain control, microscans, mass resolving power, and dynamic exclusion are the most critical parameters, whereas collision energy, TopN, and isolation width had moderate and apex trigger, monoisotopic selection, and isotopic exclusion minor effects. The insights into the data acquisition ergonomics of the Q Exactive platform presented here can guide new users and provide them with initial method parameters, some of which may also be transferable to other sample types and MS platforms.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Metabolómica/métodos
16.
Nat Commun ; 14(1): 5303, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652904

RESUMEN

Elective transjugular intrahepatic portosystemic shunt (TIPS) placement can worsen cognitive dysfunction in hepatic encephalopathy (HE) patients due to toxins, including possible microbial metabolites, entering the systemic circulation. We conducted untargeted metabolomics on a prospective cohort of 22 patients with cirrhosis undergoing elective TIPS placement and followed them up to one year post TIPS for HE development. Here we suggest that pre-existing intrahepatic shunting predicts HE severity post-TIPS. Bile acid levels decrease in the peripheral vein post-TIPS, and the abundances of three specific conjugated di- and tri-hydroxylated bile acids are inversely correlated with HE grade. Bilirubins and glycerophosphocholines undergo chemical modifications pre- to post-TIPS and based on HE grade. Our results suggest that TIPS-induced metabolome changes can impact HE development, and that pre-existing intrahepatic shunting could be used to predict HE severity post-TIPS.


Asunto(s)
Encefalopatía Hepática , Derivación Portosistémica Intrahepática Transyugular , Humanos , Encefalopatía Hepática/etiología , Estudios Prospectivos , Venas , Espectrometría de Masas , Ácidos y Sales Biliares
18.
Environ Sci Technol ; 57(10): 4071-4081, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36862087

RESUMEN

Roughly half of the human population lives near the coast, and coastal water pollution (CWP) is widespread. Coastal waters along Tijuana, Mexico, and Imperial Beach (IB), USA, are frequently polluted by millions of gallons of untreated sewage and stormwater runoff. Entering coastal waters causes over 100 million global annual illnesses, but CWP has the potential to reach many more people on land via transfer in sea spray aerosol (SSA). Using 16S rRNA gene amplicon sequencing, we found sewage-associated bacteria in the polluted Tijuana River flowing into coastal waters and returning to land in marine aerosol. Tentative chemical identification from non-targeted tandem mass spectrometry identified anthropogenic compounds as chemical indicators of aerosolized CWP, but they were ubiquitous and present at highest concentrations in continental aerosol. Bacteria were better tracers of airborne CWP, and 40 tracer bacteria comprised up to 76% of the bacteria community in IB air. These findings confirm that CWP transfers in SSA and exposes many people along the coast. Climate change may exacerbate CWP with more extreme storms, and our findings call for minimizing CWP and investigating the health effects of airborne exposure.


Asunto(s)
Partículas y Gotitas de Aerosol , Agua de Mar , Humanos , Agua de Mar/microbiología , Ríos , Aguas del Alcantarillado/análisis , ARN Ribosómico 16S , Contaminación del Agua , Bacterias , Aerosoles/análisis , Monitoreo del Ambiente/métodos
19.
Metabolomics ; 19(3): 18, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920561

RESUMEN

INTRODUCTION: Molecular networking (MN) has emerged as a key strategy to organize and annotate untargeted tandem mass spectrometry (MS/MS) data generated using either data independent- or dependent acquisition (DIA or DDA). The latter presents a time-efficient approach where full scan (MS1) and MS2 spectra are obtained with shorter cycle times. However, there are limitations related to DDA parameters, some of which are (i) intensity threshold and (ii) collision energy. The former determines ion prioritization for fragmentation, and the latter defines the fragmentation of selected ions. These DDA parameters inevitably determine the coverage and quality of spectral data, which would affect the outputs of MN methods. OBJECTIVES: This study assessed the extent to which the quality of the tandem spectral data relates to MN topology and subsequent implications in the annotation of metabolites and chemical classification relative to the different DDA parameters employed. METHODS: Herein, characterising the metabolome of Momordica cardiospermoides plants, we employ classical MN performance indicators to investigate the effects of collision energies and intensity thresholds on the topology of generated MN and propagated annotations. RESULTS: We demonstrated that the lowest predefined intensity thresholds and collision energies result in comprehensive molecular networks. Comparatively, higher intensity thresholds and collision energies resulted in fewer MS2 spectra acquisition, subsequently fewer nodes, and a limited exploration of the metabolome through MN. CONCLUSION: Contributing to ongoing efforts and conversations on improving DDA strategies, this study proposes a framework in which multiple DDA parameters are utilized to increase the coverage of ions acquired and improve the global coverage of MN, propagated annotations, and the chemical classification performed.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Metaboloma , Iones
20.
medRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36711444

RESUMEN

Hepatic encephalopathy (HE) is a common complication of advanced liver disease causing brain dysfunction. This is likely due to the accumulation of unfiltered toxins within the bloodstream. A known risk factor for developing or worsening HE is the placement of a transjugular intrahepatic portosystemic shunt (TIPS), which connects the pre-hepatic and post-hepatic circulation allowing some blood to bypass the dysfunctional liver and decreases portal hypertension. To better understand the pathophysiology of post-TIPS HE, we conducted a multi-center prospective cohort study employing metabolomic analyses on hepatic vein and peripheral vein blood samples from participants with cirrhosis undergoing elective TIPS placement, measuring chemical modifications and changes in concentrations of metabolites resulting from TIPS placement. In doing so, we identified numerous alterations in metabolites, including bile acids, glycerophosphocholines, and bilirubins possibly implicated in the development and severity of HE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA