Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891681

RESUMEN

Crotalus snakebites induce various toxicological effects, encompassing neurological, myotoxic, and cytotoxic symptoms, with potentially fatal outcomes. Investigating venom toxicity is essential for public health, and developing new tools allows for these effects to be studied more comprehensively. The research goals include the elucidation of the physiological consequences of venom exposure and the assessment of toxicity using animal models. Chicken embryos serve as valuable models for assessing venom toxicity through the chick embryotoxicity screening test (CHEST) and the chick chorioallantoic membrane (CAM) assay, particularly useful for evaluating vascular impacts. C. adamanteus venom application resulted in higher embryotoxicity and morphological abnormalities, such as Siamese twins. The CAM assay demonstrated the hemorrhagic effects of venom, varying with venom type and concentration. The irritant potential of both venom types was classified as slight or moderate depending on their concentration. Additionally, acetylcholinesterase (AChE) activity was performed to receive information about organ toxicity. The results show that both venoms induced changes in the whole embryo, heart, and liver weights, but the C. adamanteus venom was identified as more toxic. Specific venom concentrations affected AChE activity in embryonic tissues. These findings underscore the embryotoxic and vasoactive properties of Crotalus venoms, providing valuable insights into their mechanisms of toxicity and potential applications in biomedicine.

2.
PLoS Negl Trop Dis ; 18(4): e0012057, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557658

RESUMEN

BACKGROUND: Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa). METHODOLOGY/PRINCIPAL FINDINGS: Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies.


Asunto(s)
Antivenenos , Naja , Animales , Humanos , Antivenenos/farmacología , Naja/metabolismo , Proteómica , Estudios Prospectivos , Sudáfrica , Venenos Elapídicos/toxicidad , Proteínas
3.
Acta Vet Hung ; 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35895536

RESUMEN

The population and distribution of the European brown bear (Ursus arctos) in Slovakia are expanding as bears were observed beyond the southern border of the country in Hungary. This study presents the authors' experience with field anaesthesia of wild brown bears trapped in a custom-made container trap and of free-ranging individuals. A total of 25 bears were captured and translocated using a specially designed metal cage trap. The study compared the effectiveness of three anaesthetic protocols in managing both free-ranging and trapped bears. For juveniles, or small adults up to 70 kg body weight (BW), ketamine-xylazine mixture was used at doses of 3.0-4.0 mg kg-1 ketamine and 1.0-1.5 mg kg-1 xylazine BW. The immobilisation of free-ranging bears, which are usually attracted by municipal solid garbage, was performed remotely using PneuDart darts with 2-3 ml of anaesthetics. For this purpose, tiletamine-zolazepam-detomidine (T-Z-D) was preferred at a dose of 1.7-2.5 (T) mg kg-1, 1.7-2.5 (Z) mg kg-1, and 0.1-0.2 (D) mg kg-1 BW. Induction time was from 7 to 18 min post darting with the average of 12.04 min. The same combination was applied to bears trapped in a container trap, with anaesthesia lasting from 40 to 150 min. If T-Z-D was used, no further anaesthetic was needed. In all cases, anaesthesia was antagonised by atipamezole at a dose of 0.15-0.225 mg kg-1 BW. Atipamezole was injected at a half dose intramuscularly and a half dose subcutaneously at the time when the palpebral reflex reappeared and the bear was able to move his tongue. It was shown that the T-Z-D mixture is a safe, low-volume anaesthetic darting protocol that is reversible, has minimal adverse effects on physiological parameters, and has a sufficient duration. The results can be used to manage large carnivore populations in the Carpathian region.

4.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918763

RESUMEN

Three-finger toxins are naturally occurring proteins in Elapidae snake venoms. Nowadays, they are gaining popularity because of their therapeutic potential. On the other hand, these proteins may cause undesirable reactions inside the body's cells. A full assessment of the safety of Naja ashei venom components for human cell application is still unknown. The aim of the study was to determine the effect of the exogenous application of three-finger toxins on the cells of monocytes (U-937) and promyelocytes (HL-60), with particular emphasis on the modification of their membranes under the influence of various doses of 3FTx protein fraction (0-120 ng/mL). The fraction exhibiting the highest proportion of 3FTx proteins after size exclusion chromatography (SEC) separation was used in the experiments. The structural response of cell membranes was described on the basis of single-component and multi-component Langmuir monolayers that mimicked the native membranes. The results show that the mechanism of protein-lipid interactions depends on both the presence of lipid polar parts (especially zwitterionic type of lipids) and the degree of membrane saturation (the greatest-for unsaturated lipids). The biochemical indicators reflecting the tested cells (MDA, LDH, cell survival, induction of inflammation, LD50) proved the results that were obtained for the model.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Membranas Artificiales , Naja/metabolismo , Proteínas/toxicidad , Animales , Fraccionamiento Químico , Cromatografía en Gel , Femenino , Células HL-60 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Dosificación Letal Mediana , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Membranas , Presión , Temperatura , Células U937
5.
Toxins (Basel) ; 13(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922392

RESUMEN

The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen's Egg Test-Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds.


Asunto(s)
Venenos de Víboras/toxicidad , Viperidae , Animales , Línea Celular , Embrión de Pollo/efectos de los fármacos , Humanos , Pruebas de Toxicidad
6.
Biomolecules ; 10(9)2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899462

RESUMEN

The dynamic development of venomics in recent years has resulted in a significant increase in publicly available proteomic data. The information contained therein is often used for comparisons between different datasets and to draw biological conclusions therefrom. In this article, we aimed to show the possible differences that can arise, in the final results of the proteomic experiment, while using different research workflows. We applied two software solutions (PeptideShaker and MaxQuant) to process data from shotgun LC-MS/MS analysis of Naja ashei venom and collate it with the previous report concerning this species. We were able to provide new information regarding the protein composition of this venom but also present the qualitative and quantitative limitations of currently used proteomic methods. Moreover, we reported a rapid and straightforward technique for the separation of the fraction of proteins from the three-finger toxin family. Our results underline the necessary caution in the interpretation of data based on a comparative analysis of data derived from different studies.


Asunto(s)
Biología Computacional/métodos , Naja/metabolismo , Proteoma/química , Proteómica/métodos , Proteínas de Reptiles/química , Venenos de Serpiente/química , Animales , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Femenino , Masculino , Proteoma/metabolismo , Programas Informáticos , Espectrometría de Masas en Tándem
7.
Toxins (Basel) ; 12(8)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759763

RESUMEN

In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Venenos Elapídicos/farmacología , Naja , Animales , Biopelículas/efectos de los fármacos , Candida/fisiología , Ciclo Celular/efectos de los fármacos , Venenos Elapídicos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteoma/análisis , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Reptiles/análisis
8.
Animals (Basel) ; 10(3)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182656

RESUMEN

Snake venom is an extremely interesting natural mixture of proteins and peptides, characterized by both high diversity and high pharmacological potential. Much attention has been paid to the study of venom composition of different species and also detailed analysis of the properties of individual components. Since proteins and peptides are the active ingredients in venom, rapidly developing proteomic techniques are used to analyze them. During such analyses, one of the routine operations is to measure the protein concentration in the sample. The aim of this study was to compare five methods used to measure protein content in venoms of two snake species: the Viperids representative, Agkistrodon contortrix, and the Elapids representative, Naja ashei. The study showed that for A. contortrix venom, the concentration of venom protein measured by four methods is very similar and only the NanoDrop method clearly stands out from the rest. However, in the case of N. ashei venom, each technique yields significantly different results. We hope that this report will help to draw attention to the problem of measuring protein concentration, especially in such a complex mixture as animal venoms.

9.
Molecules ; 25(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936872

RESUMEN

One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Venenos Elapídicos , Naja , Staphylococcus epidermidis/fisiología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Venenos Elapídicos/química , Venenos Elapídicos/farmacología
10.
J Cell Physiol ; 234(5): 6147-6160, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30317566

RESUMEN

Snake venoms are widely studied in terms of their systemic toxicity and proteolytic, hemotoxic, neurotoxic, and cytotoxic activities. However, little is known about snake-venom-mediated effects when used at low, noncytotoxic concentrations. In the current study, two human fibroblast cell lines of different origin, namely WI-38 fetal lung fibroblasts and BJ foreskin fibroblasts were used to investigate snake-venom-induced adaptive response at a relatively noncytotoxic concentration (0.01 µg/ml). The venoms of Indochinese spitting cobra ( Naja siamensis), western green mamba ( Dendroaspis viridis), forest cobra ( Naja melanoleuca), and southern copperhead ( Agkistrodon contortrix) were considered. Snake venoms promoted FOXO3a-mediated oxidative stress response and to a lesser extent DNA damage response, which lead to changes in cell cycle regulators both at messenger RNA and protein levels, limited cell proliferation and migration, and induced cellular senescence. Taken together, we have shown for the first time that selected snake venoms may also exert adverse effects when used at relatively noncytotoxic concentrations.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Venenos de Serpiente/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos
11.
Molecules ; 23(3)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29518026

RESUMEN

Naja ashei is an African spitting cobra species closely related to N. mossambica and N. nigricollis. It is known that the venom of N. ashei, like that of other African spitting cobras, mainly has cytotoxic effects, however data about its specific protein composition are not yet available. Thus, an attempt was made to determine the venom proteome of N. ashei with the use of 2-D electrophoresis and MALDI ToF/ToF (Matrix-Assisted Laser Desorption/Ionization Time of Flight) mass spectrometry techniques. Our investigation revealed that the main components of analysed venom are 3FTxs (Three-Finger Toxins) and PLA2s (Phospholipases A2). Additionally the presence of cysteine-rich venom proteins, 5'-nucleotidase and metalloproteinases has also been confirmed. The most interesting fact derived from this study is that the venom of N. ashei includes proteins not described previously in other African spitting cobras-cobra venom factor and venom nerve growth factor. To our knowledge, there are currently no other reports concerning this venom composition and we believe that our results will significantly increase interest in research of this species.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Naja/metabolismo , Animales , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Toxins (Basel) ; 8(12)2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983581

RESUMEN

Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.


Asunto(s)
Venenos de Crotálidos/química , Péptidos/análisis , Proteínas de Reptiles/análisis , Electroforesis en Gel Bidimensional , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Molecules ; 21(10)2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27775574

RESUMEN

Snake venom is a rich source of peptides and proteins with a wide range of actions. Many of the venom components are currently being tested for their usefulness in the treatment of many diseases ranging from neurological and cardiovascular to cancer. It is also important to constantly search for new proteins and peptides with properties not yet described. The venom of Vipera berus berus has hemolytic, proteolytic and cytotoxic properties, but its exact composition and the factors responsible for these properties are not known. Therefore, an attempt was made to identify proteins and peptides derived from this species venom by using high resolution two-dimensional electrophoresis and MALDI ToF/ToF mass spectrometry. A total of 11 protein classes have been identified mainly proteases but also l-amino acid oxidases, C-type lectin like proteins, cysteine-rich venom proteins and phospholipases A2 and 4 peptides of molecular weight less than 1500 Da. Most of the identified proteins are responsible for the highly hemotoxic properties of the venom. Presence of venom phospholipases A2 and l-amino acid oxidases cause moderate neuro-, myo- and cytotoxicity. All successfully identified peptides belong to the bradykinin-potentiating peptides family. The mass spectrometry data are available via ProteomeXchange with identifier PXD004958.


Asunto(s)
Péptidos/aislamiento & purificación , Proteoma/aislamiento & purificación , Venenos de Víboras/metabolismo , Viperidae/metabolismo , Animales , Cromatografía Líquida de Alta Presión , L-Aminoácido Oxidasa/aislamiento & purificación , Espectrometría de Masas , Peso Molecular , Fosfolipasas A2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...