Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab Rep ; 39: 101083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694234

RESUMEN

Selective screening for inherited metabolic disorders (IMD) began in Cyprus in 1990. Over the last thirty-three years 7388 patients were investigated for IMD and 200 diagnoses were made (diagnostic yield 2.7%). The existence of a single laboratory of Biochemical Genetics for the whole island facilitated the creation of a national registry for IMD. The minimal prevalence of IMD in Cyprus is 53.3 cases per 100,000 live births. The most common group are disorders of amino acid metabolism (41.0%), followed by disorders of carbohydrate metabolism (16.5%), disorders of complex molecule degradation (16.5%), mitochondrial disorders (10.5%) and disorders of vitamin and co-factor metabolism (5.5%). Hyperphenylalaninaemia is the most common IMD (14.0%) followed by galactosaemia (7.0%), glutaric aciduria type I (5.5%) and MSUD (4.0%). Some disorders were found to have a relatively high incidence in specific communities, for example Sandhoff disease among the Cypriot Maronites and GM1 gangliosidosis in one particular area of the island. Other disorders were found to have a relatively higher overall incidence, compared to other Caucasian populations, for example galactosaemia, glutaric aciduria type I and MSUD, while fatty acid oxidation defects, Gaucher disease and classic PKU were found to have a relatively lower incidence. Molecular characterization of selected disorders revealed many novel genetic variants, specific to the Cypriot population.

2.
BMC Med Genomics ; 17(1): 78, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528593

RESUMEN

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD), is the initial and rate-limiting enzyme in the catabolic pathway of pyrimidines. Deleterious variants in the DPYD gene cause DPD deficiency, a rare autosomal recessive disorder. The clinical spectrum of affected individuals is wide ranging from asymptomatic to severely affected patients presenting with intellectual disability, motor retardation, developmental delay and seizures. DPD is also important as the main enzyme in the catabolism of 5-fluorouracil (5-FU) which is extensively used as a chemotherapeutic agent. Even in the absence of clinical symptoms, individuals with either complete or partial DPD deficiency face a high risk of severe and even fatal fluoropyrimidine-associated toxicity. The identification of causative genetic variants in DPYD is therefore gaining increasing attention due to their potential use as predictive markers of fluoropyrimidine toxicity. METHODS: A male infant patient displaying biochemical features of DPD deficiency was investigated by clinical exome sequencing. Bioinformatics tools were used for data analysis and results were confirmed by MLPA and Sanger sequencing. RESULTS: A novel intragenic deletion of 71.2 kb in the DPYD gene was identified in homozygosity. The deletion, DPYD(NM_000110.4):c.850 + 23455_1128 + 8811del, eliminates exons 9 and 10 and may have resulted from a non-homologous end-joining event, as suggested by in silico analysis. CONCLUSIONS: The study expands the spectrum of DPYD variants associated with DPD deficiency. Furthermore, it raises the concern that patients at risk for fluoropyrimidine toxicity due to DPYD deletions could be missed during pre-treatment genetic testing for the currently recommended single nucleotide polymorphisms.


Asunto(s)
Deficiencia de Dihidropirimidina Deshidrogenasa , Lactante , Humanos , Masculino , Deficiencia de Dihidropirimidina Deshidrogenasa/genética , Deficiencia de Dihidropirimidina Deshidrogenasa/complicaciones , Deficiencia de Dihidropirimidina Deshidrogenasa/tratamiento farmacológico , Dihidrouracilo Deshidrogenasa (NADP)/genética , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Antimetabolitos Antineoplásicos/efectos adversos , Fluorouracilo/efectos adversos , Pruebas Genéticas
3.
Mol Genet Metab Rep ; 36: 100997, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600231

RESUMEN

Pompe disease is a rare metabolic myopathy caused by pathogenic variants affecting the activity of the lysosomal glycogen-degrading enzyme acid alpha-glucosidase (GAA). Impaired GAA function results in the accumulation of undegraded glycogen within lysosomes in multiple tissues but predominantly affects the skeletal, smooth and cardiac muscle. The degree of residual enzymatic activity appears to roughly correlate with the age of onset and the severity of the clinical symptoms. Here, we report four siblings in which the GAA variants NM_000152.5:c.2237G > C p.(Trp746Ser) and NM_000152.5:c.266G > A p.(Arg89His) were identified as an incidental finding of clinical exome sequencing. These variants are listed in the ClinVar and the Pompe disease GAA variant databases but are reported here for the first time in compound heterozygosity. All four siblings displayed normal urine tetrasaccharide levels and no clinical manifestations related to Pompe disease. Nevertheless, GAA enzymatic activity was within the range for late onset Pompe patients. Our report shows an association between a novel genotype and attenuated GAA enzymatic activity. The clinical significance can only be established by the regular monitoring of these individuals. The study highlights the major challenges for clinical care arising from incidental findings of next generation sequencing.

4.
Biochimie ; 200: 172-183, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35691532

RESUMEN

Starch binding domain-containing protein 1 (STBD1) is an endoplasmic reticulum (ER)-resident, glycogen-binding protein. In addition to glycogen, STBD1 has been shown to interact with several proteins implicated in glycogen synthesis and degradation, yet its function in glycogen metabolism remains largely unknown. In addition to the bulk of the ER, STBD1 has been reported to localize at regions of physical contact between mitochondria and the ER, known as Mitochondria-ER Contact sites (MERCs). Given the emerging correlation between distortions in the integrity of hepatic MERCs and insulin resistance, our study aimed to delineate the role of STBD1 in vivo by addressing potential abnormalities in glucose metabolism and ER-mitochondria communication associated with insulin resistance in mice with targeted inactivation of Stbd1 (Stbd1KO). We show that Stbd1KO mice at the age of 24 weeks displayed reduced hepatic glycogen content and aberrant control of glucose homeostasis, compatible with insulin resistance. In line with the above, Stbd1-deficient mice presented with increased fasting blood glucose and insulin levels, attenuated activation of insulin signaling in the liver and skeletal muscle and elevated liver sphingomyelin content, in the absence of hepatic steatosis. Furthermore, Stbd1KO mice were found to exhibit enhanced ER-mitochondria association and increased mitochondrial fragmentation in the liver. Nevertheless, the enzymatic activity of hepatic respiratory chain complexes and ER stress levels in the liver were not altered. Our findings identify a novel important role for STBD1 in the control of glucose metabolism, associated with the integrity of hepatic MERCs.


Asunto(s)
Resistencia a la Insulina , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Glucógeno/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones , Mitocondrias/metabolismo
5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924849

RESUMEN

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


Asunto(s)
Enfermedad/etiología , Dinámicas Mitocondriales , Animales , Humanos
7.
J Cell Sci ; 133(20)2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32958708

RESUMEN

Imbalances in endoplasmic reticulum (ER) homeostasis provoke a condition known as ER stress and activate the unfolded protein response (UPR) pathway, an evolutionarily conserved cell survival mechanism. Here, we show that mouse myoblasts respond to UPR activation by stimulating glycogenesis and the formation of α-amylase-degradable, glycogen-containing ER structures. We demonstrate that the glycogen-binding protein Stbd1 is markedly upregulated through the PERK signalling branch of the UPR pathway and is required for the build-up of glycogen structures in response to ER stress activation. In the absence of ER stress, Stbd1 overexpression is sufficient to induce glycogen clustering but does not stimulate glycogenesis. Glycogen structures induced by ER stress are degraded under conditions of glucose restriction through a process that does not depend on autophagosome-lysosome fusion. Furthermore, we provide evidence that failure to induce glycogen clustering during ER stress is associated with enhanced activation of the apoptotic pathway. Our results reveal a so far unknown response of mouse myoblasts to ER stress and uncover a novel specific function of Stbd1 in this process, which may have physiological implications during myogenic differentiation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Estrés del Retículo Endoplásmico , Glucógeno , Animales , Apoptosis , Análisis por Conglomerados , Ratones , Mioblastos/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
8.
Ann Hum Genet ; 83(5): 291-298, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30994193

RESUMEN

Classic galactosaemia is an inherited metabolic disorder of galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) resulting from mutations in the GALT gene. The objectives of the present study were the determination of the carrier frequency of classic galactosaemia in the Greek Cypriot population and the molecular characterization of the disease alleles. We performed an epidemiological study involving 528 Greek Cypriots originating from all parts of Cyprus. Carriers were identified by measuring GALT activity in red blood cells and were subsequently subjected to mutation analysis. A total of five mutations were identified in patients and carriers of classic galactosaemia: a large deletion of 8.5 kb previously reported by us (55% of alleles), the known mutations p.Lys285Asn (30%), p.Pro185Ser (5%), and c.820+13A>G (5%), and a novel mutation c.378-12G>A (5%). Interestingly, the most common mutation in European populations, p.Gln188Arg, was not identified in this Cypriot cohort. The carrier frequency for classic galactosaemia among Greek Cypriots was estimated to be 1:88, predicting a homozygote incidence of 1:31,000 births. The Duarte 1 and Duarte 2 variants were found to be present at a frequency of 5.5% and 2.5%, respectively.


Asunto(s)
Galactosemias/epidemiología , Galactosemias/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Alelos , Chipre/epidemiología , Análisis Mutacional de ADN , Frecuencia de los Genes , Grecia/epidemiología , Heterocigoto , Homocigoto , Humanos , Mutación
9.
J Cell Sci ; 130(5): 903-915, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137759

RESUMEN

Starch binding domain-containing protein 1 (Stbd1) is a carbohydrate-binding protein that has been proposed to be a selective autophagy receptor for glycogen. Here, we show that mouse Stbd1 is a transmembrane endoplasmic reticulum (ER)-resident protein with the capacity to induce the formation of organized ER structures in HeLa cells. In addition to bulk ER, Stbd1 was found to localize to mitochondria-associated membranes (MAMs), which represent regions of close apposition between the ER and mitochondria. We demonstrate that N-myristoylation and binding of Stbd1 to glycogen act as major determinants of its subcellular targeting. Moreover, overexpression of non-myristoylated Stbd1 enhanced the association between ER and mitochondria, and further induced prominent mitochondrial fragmentation and clustering. Conversely, shRNA-mediated Stbd1 silencing resulted in an increase in the spacing between ER and mitochondria, and an altered morphology of the mitochondrial network, suggesting elevated fusion and interconnectivity of mitochondria. Our data unravel the molecular mechanism underlying Stbd1 subcellular targeting, support and expand its proposed function as a selective autophagy receptor for glycogen and uncover a new role for the protein in the physical association between ER and mitochondria.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Ácido Mirístico/metabolismo , Animales , Retículo Endoplásmico/ultraestructura , Silenciador del Gen , Glucógeno/metabolismo , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Ratones , Mitocondrias/ultraestructura , Fracciones Subcelulares/metabolismo
10.
JIMD Rep ; 12: 91-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24002815

RESUMEN

Objective The characterization of a novel large deletion in the galactose-1-phosphate uridyltransferase (GALT) gene accounting for the majority of disease alleles in Cypriot patients with classic galactosemia. Methods DNA sequencing was used to identify the mutations followed by multiplex ligation-dependent probe amplification (MLPA) analysis in the cases suspected of harboring a deletion. In order to map the breakpoints of the novel deletion, a PCR walking approach was employed. A simple PCR assay was validated for diagnostic testing for the new deletion. Haplotype analysis was performed using microsatellite markers in the chromosomal region 9p. RT-PCR was used to study RNA expression in lymphoblastoid cell lines. Results The new deletion spans a region of 8489 bp and eliminates all GALT exons as well as the non-translated sequences of the adjacent interleukin 11 receptor alpha (IL11RA) gene. In addition, the deletion is flanked by a 6 bp block of homologous sequence on either side suggesting that a single deletion event has occurred, probably mediated by a recombination mechanism. Microsatellite marker analysis revealed the existence of a common haplotype. The RNA expression studies showed a lack of IL11RA transcripts in patients homozygous for the deletion. Conclusions We have identified and characterized a novel contiguous deletion which affects both the GALT enzyme and the IL11RA protein resulting in classic galactosemia with additional phenotypic abnormalities such as craniosynostosis, a feature that has been associated with defects in the IL11RA gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...