Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0268767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35609088

RESUMEN

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Biotina , COVID-19/terapia , Humanos , Inmunización Pasiva , Sondas Moleculares , Pruebas de Neutralización , Pandemias , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
2.
bioRxiv ; 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35018379

RESUMEN

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.

3.
Cell Rep ; 33(4): 108322, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33091382

RESUMEN

Biotin-labeled molecular probes, comprising specific regions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. Here, we design constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions include full-length spike ectodomain as well as various subregions, and we also design mutants that eliminate recognition of the angiotensin-converting enzyme 2 (ACE2) receptor. Yields of biotin-labeled probes from transient transfection range from ∼0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes are characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe is determined by cryoelectron microscopy. We also characterize antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike ectodomain probes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/inmunología , Sondas Moleculares/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Especificidad de Anticuerpos/inmunología , Sitios de Unión de Anticuerpos/inmunología , Biotinilación , COVID-19 , Microscopía por Crioelectrón , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/metabolismo
4.
SSRN ; : 3639618, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32742241

RESUMEN

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from ~0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes. Funding: Support for this work was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID). Support for this work was also provided by COVID-19 Fast Grants, the Jack Ma Foundation, the Self Graduate Fellowship Program, and NIH grants DP5OD023118, R21AI143407, and R21AI144408. Some of this work was performed at the Columbia University Cryo-EM Center at the Zuckerman Institute, and some at the Simons Electron Microscopy Center (SEMC) and National Center for Cryo-EM Access and Training (NCCAT) located at the New York Structural Biology Center, supported by grants from the Simons Foundation (SF349247), NYSTAR, and the NIH National Institute of General Medical Sciences (GM103310). Conflict of Interest: The authors declare that they have no conflict of interest. Ethical Approval: Peripheral blood mononuclear cells (PBMCs) for B cell sorting were obtained from a convalescent SARS-CoV-2 patient (collected 75 days post symptom onset under an IRB approved clinical trial protocol, VRC 200 - ClinicalTrials.gov Identifier: NCT00067054) and a healthy control donor from the NIH blood bank pre-SARS-CoV-2 pandemic.

5.
bioRxiv ; 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32596696

RESUMEN

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from ~0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes.

6.
Cancer Cell ; 34(2): 331-345.e11, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30107179

RESUMEN

Therapeutic antibodies targeting ovarian cancer (OvCa)-enriched receptors have largely been disappointing due to limited tumor-specific antibody-dependent cellular cytotoxicity. Here we report a symbiotic approach that is highly selective and superior compared with investigational clinical antibodies. This bispecific-anchored cytotoxicity activator antibody is rationally designed to instigate "cis" and "trans" cytotoxicity by combining specificities against folate receptor alpha-1 (FOLR1) and death receptor 5 (DR5). Whereas the in vivo agonist DR5 signaling requires FcγRIIB interaction, the FOLR1 anchor functions as a primary clustering point to retain and maintain a high level of tumor-specific apoptosis. The presented proof of concept study strategically makes use of a tumor cell-enriched anchor receptor for agonist death receptor targeting to potentially generate a clinically viable strategy for OvCa.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Receptor 1 de Folato/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/patología , Receptores de IgG/fisiología
7.
Clin Cancer Res ; 23(21): 6529-6540, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28778862

RESUMEN

Purpose: A hallmark of neoplasia is increased ribosome biogenesis, and targeting this process with RNA polymerase I (Pol I) inhibitors has shown some efficacy. We examined the contribution and potential targeting of ribosomal machinery in chemotherapy-resistant and -sensitive models of ovarian cancer.Experimental Design: Pol I machinery expression was examined, and subsequently targeted with the Pol I inhibitor CX-5461, in ovarian cancer cell lines, an immortalized surface epithelial line, and patient-derived xenograft (PDX) models with and without chemotherapy. Effects on viability, Pol I occupancy of rDNA, ribosomal content, and chemosensitivity were examined.Results: In PDX models, ribosomal machinery components were increased in chemotherapy-treated tumors compared with controls. Thirteen cell lines were sensitive to CX-5461, with IC50s 25 nmol/L-2 µmol/L. Interestingly, two chemoresistant lines were 10.5- and 5.5-fold more sensitive than parental lines. CX-5461 induced DNA damage checkpoint activation and G2-M arrest with increased γH2AX staining. Chemoresistant cells had 2- to 4-fold increased rDNA Pol I occupancy and increased rRNA synthesis, despite having slower proliferation rates, whereas ribosome abundance and translational efficiency were not impaired. In five PDX models treated with CX-5461, one showed a complete response, one a 55% reduction in tumor volume, and one maintained stable disease for 45 days.Conclusions: Pol I inhibition with CX-5461 shows high activity in ovarian cancer cell lines and PDX models, with an enhanced effect on chemoresistant cells. Effects occur independent of proliferation rates or dormancy. This represents a novel therapeutic approach that may have preferential activity in chemoresistant populations. Clin Cancer Res; 23(21); 6529-40. ©2017 AACR.


Asunto(s)
Benzotiazoles/administración & dosificación , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Naftiridinas/administración & dosificación , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Benzotiazoles/efectos adversos , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Naftiridinas/efectos adversos , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Biol Cell ; 27(21): 3233-3244, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27582386

RESUMEN

The loss of E-cadherin expression in association with the epithelial-mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin-expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface.


Asunto(s)
Cadherinas/genética , Cadherinas/metabolismo , Animales , Cadherinas/fisiología , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación Missense , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Receptores de Superficie Celular , Transducción de Señal , Factores de Transcripción/metabolismo
9.
PLoS One ; 11(2): e0148574, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26845024

RESUMEN

Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.


Asunto(s)
Cadherinas/metabolismo , Cateninas/metabolismo , Neoplasias del Colon/metabolismo , Microtúbulos/metabolismo , Cateninas/genética , Adhesión Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Humanos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Catenina delta
10.
J Biol Chem ; 290(35): 21749-61, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26175155

RESUMEN

Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation.


Asunto(s)
Cadherinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/farmacología , Cateninas/metabolismo , Adhesión Celular/efectos de los fármacos , Perros , Humanos , Imagenología Tridimensional , Cinética , Cloruro de Litio/farmacología , Células MCF-7 , Ratones , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Ratas , Estaurosporina/farmacología , Catenina delta
11.
Mol Immunol ; 54(3-4): 319-26, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23352962

RESUMEN

Receptor-specific antibodies can both prevent ligand-receptor interaction and initiate receptor signaling. Previously we generated monoclonal antibody 8E8 (mAb 8E8) against protease-activated receptor type 3 (PAR3) which inhibited proliferation of B cell hybridoma. Here we used mAb 8E8 and PAR1-specific polyclonal antibody to reveal the functions and cooperating partners of PAR3 in endothelial cells and in B lymphocytes. MAb 8E8 or PAR1 agonist peptide stimulated IL-6 and IL-8 production and VCAM-1 expression in HPMEC-ST1.6R cells. PAR1 antibody stimulated only VCAM-1 expression, while ICAM-1 expression was stimulated with mAB 8E8 or PAR3 peptide. MAb 8E8 stimulated weak mitogenic response, while PAR1 antibody inhibited it in normal but not in malignant B lymphocytes. Sandwich ELISA assay demonstrated the interaction of PAR3 with PAR1 in malignant cell lines and with IgM in normal B lymphocytes. It is concluded that PAR3 cooperates with PAR1 to mediate the effect of thrombin on cytokine production and VCAM-1 expression in endothelial cells and on cell proliferation in malignant B cells. ICAM-1 expression in endothelial cells requires PAR3 without PAR1. The inhibitory effect of thrombin in normal B lymphocytes is mediated by PAR1 alone, while mitogenic and pro-survival signaling in B lymphocytes is provided through PAR3 in cooperation with BCR.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Receptores de Trombina/inmunología , Receptores de Trombina/metabolismo , Animales , Especificidad de Anticuerpos , Línea Celular , Proliferación Celular , Humanos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Interleucina-8/inmunología , Interleucina-8/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor PAR-1/inmunología , Receptor PAR-1/metabolismo , Receptores de Trombina/biosíntesis , Trombina/inmunología , Trombina/metabolismo , Molécula 1 de Adhesión Celular Vascular/inmunología , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
Mol Biol Cell ; 23(11): 2092-108, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22513089

RESUMEN

We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin-catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor-induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane.


Asunto(s)
Cadherinas/inmunología , Calcio/metabolismo , Cateninas/metabolismo , Epítopos/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Cadherinas/química , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Perros , Regulación hacia Abajo/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Mapeo Epitopo , Epítopos/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Morfogénesis/efectos de los fármacos , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Ratas , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA