Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(17): e110784, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35859387

RESUMEN

The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.


Asunto(s)
Factor Inductor de la Apoptosis , Complejo I de Transporte de Electrón , Proteínas de Transporte de Membrana Mitocondrial , Factor Inductor de la Apoptosis/metabolismo , Disulfuros/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Transporte de Proteínas
2.
Nat Cell Biol ; 24(6): 996-1004, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654841

RESUMEN

The distinct activities of organelles depend on the proper function of their membranes. Coordinated membrane biogenesis of different organelles necessitates lipid transport from their site of synthesis to their destination. Several factors have been proposed to participate in lipid distribution, but despite its basic importance, in vivo evidence linking the absence of putative transport pathways to specific transport defects remains scarce. A reason for this scarcity is the near absence of in vivo lipid trafficking assays. Here we introduce a versatile method named METALIC (Mass tagging-Enabled TrAcking of Lipids In Cells) to track interorganelle lipid flux inside cells. In this strategy, two enzymes, one directed to a 'donor' and the other to an 'acceptor' organelle, add two distinct mass tags to lipids. Mass-spectrometry-based detection of lipids bearing the two mass tags is then used to quantify exchange between the two organelles. By applying this approach, we show that the ERMES and Vps13-Mcp1 complexes have transport activity in vivo, and unravel their relative contributions to endoplasmic reticulum-mitochondria lipid exchange.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Transporte Biológico , Retículo Endoplásmico/metabolismo , Lípidos , Mitocondrias/metabolismo
3.
EMBO J ; 39(19): e103889, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815200

RESUMEN

Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.


Asunto(s)
Adenilato Quinasa/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas
4.
Cell Rep ; 26(3): 759-774.e5, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650365

RESUMEN

Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates.


Asunto(s)
Disulfuros/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Humanos , Transporte de Proteínas , Control de Calidad
5.
Curr Opin Cell Biol ; 57: 71-76, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30554079

RESUMEN

Over the last years, the importance of inter-organelle communication has become more and more evident, attested by the fast growing number of newly-identified membrane contact sites (MCS). At MCSs two organelles are connected via protein tethers that bring them in close proximity to facilitate metabolite exchange. In this review, we will focus on the MCSs connecting the ER and mitochondria, which have been implicated in phospholipid transport. While we already know the molecular identity of some tethers, we are still far from understanding the mechanisms underlying the phospholipid transport processes. In vitro studies suggest that some proteins in MCSs are capable of transporting lipids, however only at rates that do not meet the mitochondrial lipid demand. In vivo studies are even more puzzling as it appears that many redundant lipid transport routes, involving various lipid transport proteins and various MCSs, compensate for each other when necessary. Here, we will discuss the challenges in interpreting the data on lipid transport between ER and mitochondria from in vitro and in vivo experiments by highlighting some critical aspects that might be worth addressing in the future.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Membranas Mitocondriales/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Fenómenos Fisiológicos Celulares , Humanos , Mitocondrias/metabolismo , Orgánulos/metabolismo
6.
Redox Biol ; 17: 200-206, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704824

RESUMEN

Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4.


Asunto(s)
Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas/genética , Animales , Disulfuros/química , Ratones , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Transporte de Proteínas/genética
7.
Cell Metab ; 22(4): 721-33, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26387864

RESUMEN

The essential oxidoreductase Mia40/CHCHD4 mediates disulfide bond formation and protein folding in the mitochondrial intermembrane space. Here, we investigated the interactome of Mia40 thereby revealing links between thiol-oxidation and apoptosis, energy metabolism, and Ca(2+) signaling. Among the interaction partners of Mia40 is MICU1-the regulator of the mitochondrial Ca(2+) uniporter (MCU), which transfers Ca(2+) across the inner membrane. We examined the biogenesis of MICU1 and find that Mia40 introduces an intermolecular disulfide bond that links MICU1 and its inhibitory paralog MICU2 in a heterodimer. Absence of this disulfide bond results in increased receptor-induced mitochondrial Ca(2+) uptake. In the presence of the disulfide bond, MICU1-MICU2 heterodimer binding to MCU is controlled by Ca(2+) levels: the dimer associates with MCU at low levels of Ca(2+) and dissociates upon high Ca(2+) concentrations. Our findings support a model in which mitochondrial Ca(2+) uptake is regulated by a Ca(2+)-dependent remodeling of the uniporter complex.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/química , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Dimerización , Disulfuros/química , Disulfuros/metabolismo , Células HEK293 , Células HeLa , Humanos , Iones/química , Iones/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
8.
Biochem Soc Trans ; 42(4): 952-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25109985

RESUMEN

Eukaryotic cells developed diverse mechanisms to guide proteins to more than one destination within the cell. Recently, the proteome of the IMS (intermembrane space) of mitochondria of yeast cells was identified showing that approximately 20% of all soluble IMS proteins are dually localized to the IMS, as well as to other cellular compartments. Half of these dually localized proteins are important for oxidative stress defence and the other half are involved in energy homoeostasis. In the present review, we discuss the mechanisms leading to the dual localization of IMS proteins and the implications for mitochondrial function.


Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Dev Cell ; 28(1): 30-42, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24360785

RESUMEN

Most mitochondrial proteins are synthesized in the cytosol and directed into the organelle; matrix proteins contain presequences that guide them through translocases in contact sites of the outer and inner membrane. In contrast, the import of many intermembrane space proteins depends on cysteine residues and the oxidoreductase Mia40. Here, we show that both import machineries can cooperate in the biogenesis of matrix proteins. Mrp10, a conserved protein of the mitochondrial ribosome, interacts with Mia40 during passage into the matrix. Mrp10 contains an unconventional proline-rich matrix-targeting sequence that renders import intermediates accessible to Mia40. Although oxidation of Mrp10 is not essential for its function in mitochondrial translation, the disulfide bonds prevent proteolytic degradation of Mrp10 and thereby counteract instability of the mitochondrial genome. The unconventional import pathway of Mrp10 is presumably part of a quality-control circle that connects mitochondrial ribosome biogenesis to the functionality of the mitochondrial disulfide relay.


Asunto(s)
Disulfuros/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Disulfuros/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Estabilidad Proteica , Transporte de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Biol Cell ; 24(14): 2160-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23676665

RESUMEN

Oxidation of cysteine residues to disulfides drives import of many proteins into the intermembrane space of mitochondria. Recent studies in yeast unraveled the basic principles of mitochondrial protein oxidation, but the kinetics under physiological conditions is unknown. We developed assays to follow protein oxidation in living mammalian cells, which reveal that import and oxidative folding of proteins are kinetically and functionally coupled and depend on the oxidoreductase Mia40, the sulfhydryl oxidase augmenter of liver regeneration (ALR), and the intracellular glutathione pool. Kinetics of substrate oxidation depends on the amount of Mia40 and requires tightly balanced amounts of ALR. Mia40-dependent import of Cox19 in human cells depends on the inner membrane potential. Our observations reveal considerable differences in the velocities of mitochondrial import pathways: whereas preproteins with bipartite targeting sequences are imported within seconds, substrates of Mia40 remain in the cytosol for several minutes and apparently escape premature degradation and oxidation.


Asunto(s)
Reductasas del Citocromo/metabolismo , Fibroblastos/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Bioensayo , Reductasas del Citocromo/genética , Disulfuros/química , Disulfuros/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Cinética , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Pliegue de Proteína , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Transducción de Señal , Radioisótopos de Azufre
11.
J Biol Chem ; 288(4): 2676-88, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23233680

RESUMEN

Mia40 and the sulfhydryl:cytochrome c oxidoreductase Erv1/ALR are essential for oxidative protein import into the mitochondrial intermembrane space in yeast and mammals. Although mitochondrial protein import is functionally conserved in the course of evolution, many organisms seem to lack Mia40. Moreover, except for in organello import studies and in silico analyses, nothing is known about the function and properties of protist Erv homologues. Here we compared Erv homologues from yeast, the kinetoplastid parasite Leishmania tarentolae, and the non-related malaria parasite Plasmodium falciparum. Both parasite proteins have altered cysteine motifs, formed intermolecular disulfide bonds in vitro and in vivo, and could not replace Erv1 from yeast despite successful mitochondrial protein import in vivo. To analyze its enzymatic activity, we established the expression and purification of recombinant full-length L. tarentolae Erv and compared the mechanism with related and non-related flavoproteins. Enzyme assays indeed confirmed an electron transferase activity with equine and yeast cytochrome c, suggesting a conservation of the enzymatic activity in different eukaryotic lineages. However, although Erv and non-related flavoproteins are intriguing examples of convergent molecular evolution resulting in similar enzyme properties, the mechanisms of Erv homologues from parasitic protists and opisthokonts differ significantly. In summary, the Erv-mediated reduction of cytochrome c might be highly conserved throughout evolution despite the apparent absence of Mia40 in many eukaryotes. Nevertheless, the knowledge on mitochondrial protein import in yeast and mammals cannot be generally transferred to all other eukaryotes, and the corresponding pathways, components, and mechanisms remain to be analyzed.


Asunto(s)
Reductasas del Citocromo/química , Citocromos c/química , Proteínas Mitocondriales/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , Oxidorreductasas/química , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Animales , Linaje de la Célula , Biología Computacional/métodos , Electrones , Prueba de Complementación Genética , Cinética , Kinetoplastida/metabolismo , Leishmania , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Plasmodium/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
12.
Mol Biol Cell ; 22(20): 3749-57, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865594

RESUMEN

Superoxide dismutase 1 (Sod1) is an important antioxidative enzyme that converts superoxide anions to hydrogen peroxide and water. Active Sod1 is a homodimer containing one zinc ion, one copper ion, and one disulfide bond per subunit. Maturation of Sod1 depends on its copper chaperone (Ccs1). Sod1 and Ccs1 are dually localized proteins that reside in the cytosol and in the intermembrane space of mitochondria. The import of Ccs1 into mitochondria depends on the mitochondrial disulfide relay system. However, the exact mechanism of this import process has been unclear. In this study we detail the import and folding pathway of Ccs1 and characterize its interaction with the oxidoreductase of the mitochondrial disulfide relay Mia40. We identify cysteines at positions 27 and 64 in domain I of Ccs1 as critical for mitochondrial import and interaction with Mia40. On interaction with Mia40, these cysteines form a structural disulfide bond that stabilizes the overall fold of domain I. Although the cysteines are essential for the accumulation of functional Ccs1 in mitochondria, they are dispensable for the enzymatic activity of cytosolic Ccs1. We propose a model in which the Mia40-mediated oxidative folding of domain I controls the cellular distribution of Ccs1 and, consequently, active Sod1.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Clonación Molecular , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Escherichia coli , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Plásmidos , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transducción Genética , Transformación Bacteriana
13.
EMBO J ; 30(13): 2545-56, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21610694

RESUMEN

m-AAA proteases exert dual functions in the mitochondrial inner membrane: they mediate the processing of specific regulatory proteins and ensure protein quality control degrading misfolded polypeptides to peptides. Loss of these activities leads to neuronal cell death in several neurodegenerative disorders. However, it is unclear how the m-AAA protease chooses between specific processing and complete degradation. A central and conserved function of the m-AAA protease is the processing of the ribosomal subunit MrpL32, which regulates ribosome biogenesis and the formation of respiratory complexes. Here, we demonstrate that the formation of a tightly folded domain harbouring a conserved CxxC-X(9)-CxxC sequence motif halts degradation initiated from the N-terminus and triggers the release of mature MrpL32. Oxidative stress impairs folding of MrpL32, resulting in its degradation by the m-AAA protease and decreased mitochondrial translation. Surprisingly, MrpL32 folding depends on its mitochondrial targeting sequence. Presequence-assisted folding of MrpL32 requires the complete import of the MrpL32 precursor before maturation occurs and therefore explains the need for post-translocational processing by the m-AAA protease rather than co-translocational cleavage by the general mitochondrial processing peptidase.


Asunto(s)
Secuencia de Aminoácidos/fisiología , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Pliegue de Proteína , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominio Catalítico/genética , Deinococcus/enzimología , Deinococcus/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/fisiología , Mitocondrias/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...