RESUMEN
A series of 131I tracer experiments have been conducted at two research stations in Norway, one coastal and one inland to study radioiodine transfer and dynamics in boreal, agricultural ecosystems. The hypothesis tested was that site specific and climatological factors, along with growth stage, would influence foliar uptake of 131I by grass and its subsequent loss. Results showed that the interception fraction varied widely, ranging from 0.007 to 0.83 over all experiments, and showing a strong positive correlation with biomass and stage of growth. The experimental results were compared to various models currently used to predict interception fractions and weathering loss. Results provided by interception models varied in the range of 0.5-2 times of the observed values. Regarding weathering loss, it was demonstrated that double exponential models provided a better fit with the experimental results than single exponential models. Normalising the data activity per unit area to remove bio-dilution effects, and assuming a constant single loss rate gave weathering half-times of 22.8 ± 38.3 and 10.2 ± 8.2 days for the inland and coastal site, respectively. Whilst stable iodine concentrations in grass and soil were significantly higher (by approximately a factor of 5 and 7 times for grass and soil respectively) at the coastal compared to the inland site, it was not possible to deconvolute the influence of this factor on the temporal behaviour of 131I. Nonetheless, stable iodine data allowed us to establish an upper bound on the soil to plant transfer of radioiodine via root uptake and to establish that the pathway was of minor importance in defining 131I activity concentrations in grass compared to direct contamination via interception. Climatological factors (precipitation, wind-speed and temperature) appeared to affect the dynamics of 131I in the system, however the decomposition of these collective influences into specific contributions from each factor remains unresolved and requires further study. The newly acquired data on the interception and weathering of radioiodine in boreal, agricultural ecosystems and the reparametrized models developed from this, substantially improve the toolbox available for Norwegian emergency preparedness in the event of a nuclear accident.
Asunto(s)
Radioisótopos de Yodo , Poaceae , Monitoreo de Radiación , Ecosistema , SueloRESUMEN
An environmental survey was performed in Lake Kyrtjønn, a small lake within an abandoned shooting range in the south of Norway. In Lake Kyrtjønn the total water concentrations of Pb (14µg/L), Cu (6.1µg/L) and Sb (1.3µg/L) were elevated compared to the nearby reference Lake Stitjønn, where the total concentrations of Pb, Cu and Sb were 0.76, 1.8 and 0.12µg/L, respectively. Brown trout (Salmo trutta) from Lake Kyrtjønn had very high levels of Pb in bone (104mg/kg w.w.), kidney (161mg/kg w.w.) and the gills (137mg/kg d.w), and a strong inhibition of the ALA-D enzyme activity were observed in the blood (24% of control). Dry fertilized brown trout eggs were placed in the small outlet streams from Lake Kyrtjønn and the reference lake for 6 months, and the concentrations of Pb and Cu in eggs from the Lake Kyrtjønn stream were significantly higher than in eggs from the reference. More than 90% of Pb accumulated in the egg shell, whereas more than 80% of the Cu and Zn accumulated in the egg interior. Pb in the lake sediments was elevated in the upper 2-5cm layer (410-2700mg/kg d.w), and was predominantly associated with redox sensitive fractions (e.g., organic materials, hydroxides) indicating low potential mobility and bioavailability of the deposited Pb. Only minor amounts of Cu and Sb were deposited in the sediments. The present work showed that the adult brown trout, as well as fertilized eggs and alevins, may be subjected to increased stress due to chronic exposure to Pb, whereas exposure to Cu, Zn and Sb were of less importance.