Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105256, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716703

RESUMEN

The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.

2.
Biochim Biophys Acta Biomembr ; 1865(8): 184209, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558175

RESUMEN

WaaG is a glycosyltransferase (GT) involved in the synthesis of the bacterial cell wall, and in Escherichia coli it catalyzes the transfer of a glucose moiety from the donor substrate UDP-glucose onto the nascent lipopolysaccharide (LPS) molecule which when completed constitutes the major component of the bacterium's outermost defenses. Similar to other GTs of the GT-B fold, having two Rossman-like domains connected by a short linker, WaaG is believed to undergo complex inter-domain motions as part of its function to accommodate the nascent LPS and UDP-glucose in the catalytic site located in the cleft between the two domains. As the nascent LPS is bulky and membrane-bound, WaaG is a peripheral membrane protein, adding to the complexity of studying the enzyme in a biologically relevant environment. Using specific 5-fluoro-Trp labelling of native and inserted tryptophans and 19F NMR we herein studied the dynamic interactions of WaaG with lipids using bicelles, and with the donor substrate. Line-shape changes when bicelles are added to WaaG show that the dynamic behavior is altered when binding to the model membrane, while a chemical shift change indicates an altered environment around a tryptophan located in the C-terminal domain of WaaG upon interaction with UDP-glucose or UDP. A lipid-bound paramagnetic probe was used to confirm that the membrane interaction is mediated by a loop region located in the N-terminal domain. Furthermore, the hydrolysis of the donor substrate by WaaG was quantified by 31P NMR.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipopolisacáridos , Glicosiltransferasas/química , Conformación Proteica , Glucosa , Uridina Difosfato
3.
J Phys Chem B ; 126(30): 5655-5666, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35880265

RESUMEN

Solution-state NMR can be used to study protein-lipid interactions, in particular, the effect that proteins have on lipids. One drawback is that only small assemblies can be studied, and therefore, fast-tumbling bicelles are commonly used. Bicelles contain a lipid bilayer that is solubilized by detergents. A complication is that they are only stable at high concentrations, exceeding the CMC of the detergent. This issue has previously been addressed by introducing a detergent (Cyclosfos-6) with a substantially lower CMC. Here, we developed a set of bicelles using this detergent for studies of membrane-associated mycobacterial proteins, for example, PimA, a key enzyme for bacterial growth. To mimic the lipid composition of mycobacterial membranes, PI, PG, and PC lipids were used. Diffusion NMR was used to characterize the bicelles, and spin relaxation was used to measure the dynamic properties of the lipids. The results suggest that bicelles are formed, although they are smaller than "conventional" bicelles. Moreover, we studied the effect of MTSL-labeled PimA on bicelles containing PI and PC. The paramagnetic label was shown to have a shallow location in the bicelle, affecting the glycerol backbone of the lipids. We foresee that these bicelles will be useful for detailed studies of protein-lipid interactions.


Asunto(s)
Detergentes , Fosfatidilinositoles , Detergentes/química , Glicosiltransferasas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Yoduro de Potasio
4.
BMC Biol ; 19(1): 98, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971868

RESUMEN

BACKGROUND: Mitochondrial respiration is organized in a series of enzyme complexes in turn forming dynamic supercomplexes. In Saccharomyces cerevisiae (baker's yeast), Cox13 (CoxVIa in mammals) is a conserved peripheral subunit of Complex IV (cytochrome c oxidase, CytcO), localized at the interface of dimeric bovine CytcO, which has been implicated in the regulation of the complex. RESULTS: Here, we report the solution NMR structure of Cox13, which forms a dimer in detergent micelles. Each Cox13 monomer has three short helices (SH), corresponding to disordered regions in X-ray or cryo-EM structures of homologous proteins. Dimer formation is mainly induced by hydrophobic interactions between the transmembrane (TM) helix of each monomer. Furthermore, an analysis of chemical shift changes upon addition of ATP revealed that ATP binds at a conserved region of the C terminus with considerable conformational flexibility. CONCLUSIONS: Together with functional analysis of purified CytcO, we suggest that this ATP interaction is inhibitory of catalytic activity. Our results shed light on the structural flexibility of an important subunit of yeast CytcO and provide structure-based insight into how ATP could regulate mitochondrial respiration.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato , Animales , Bovinos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Espectroscopía de Resonancia Magnética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Structure ; 29(3): 275-283.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32905793

RESUMEN

The Saccharomyces cerevisiae respiratory supercomplex factor 2 (Rcf2) is a 224-residue protein located in the mitochondrial inner membrane where it is involved in the formation of supercomplexes composed of cytochrome bc1 and cytochrome c oxidase. We previously demonstrated that Rcf2 forms a dimer in dodecylphosphocholine micelles, and here we report the solution NMR structure of this Rcf2 dimer. Each Rcf2 monomer has two soluble α helices and five putative transmembrane (TM) α helices, including an unexpectedly charged TM helix at the C terminus, which mediates dimer formation. The NOE contacts indicate the presence of inter-monomer salt bridges and hydrogen bonds at the dimer interface, which stabilize the Rcf2 dimer structure. Moreover, NMR chemical shift change mapping upon lipid titrations as well as molecular dynamics analysis reveal possible structural changes upon embedding Rcf2 into a native lipid environment. Our results contribute to the understanding of respiratory supercomplex formation and regulation.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Complejo IV de Transporte de Electrones/metabolismo , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biochim Biophys Acta Biomembr ; 1863(2): 183529, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279512

RESUMEN

The twin-arginine translocase (Tat) mediates the transport of already-folded proteins across membranes in bacteria, plants and archaea. TatA is a small, dynamic subunit of the Tat-system that is believed to be the active component during target protein translocation. TatA is foremost characterized as a bitopic membrane protein, but has also been found to partition into a soluble, oligomeric structure of yet unknown function. To elucidate the interplay between the membrane-bound and soluble forms we have investigated the oligomers formed by Arabidopsis thaliana TatA. We used several biophysical techniques to study the oligomeric structure in solution, the conversion that takes place upon interaction with membrane models of different compositions, and the effect on bilayer integrity upon insertion. Our results demonstrate that in solution TatA oligomerizes into large objects with a high degree of ordered structure. Upon interaction with lipids, conformational changes take place and TatA disintegrates into lower order oligomers. The insertion of TatA into lipid bilayers causes a temporary leakage of small molecules across the bilayer. The disruptive effect on the membrane is dependent on the liposome's negative surface charge density, with more leakage observed for purely zwitterionic bilayers. Overall, our findings indicate that A. thaliana TatA forms oligomers in solution that insert into bilayers, a process that involves reorganization of the protein oligomer.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Membrana Dobles de Lípidos , Proteínas de Transporte de Membrana , Multimerización de Proteína , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo
7.
RSC Adv ; 10(8): 4715-4724, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35495230

RESUMEN

Density functional theory calculations were used to establish correlations between the structure and the vibrational spectrum of the phosphate group in model compounds for phosphorylated amino acids. The model compounds were acetyl phosphate, methyl phosphate, and p-tolyl phosphate, which represented the phosphorylated amino acids aspartyl phosphate, serine or threonine phosphate, and tyrosine phosphate, respectively. The compounds were placed in different environments consisting of one or several HF or H2O molecules, which modeled interactions of phosphorylated amino acids in the protein environment. The calculations were performed with the B3LYP functional and the 6-311++G(3df, 3pd) basis set. In general, the wavenumbers (or frequencies) of the stretching vibrations of the terminal P-O bonds correlated better with bond lengths of the phosphate group than with its bond angles. The best correlations were obtained with the shortest and the mean terminal P-O bond lengths with standard deviations from the trend line of only 0.2 pm. Other useful correlations were observed with the bond length difference between the shortest and longest terminal P-O bond and with the bond length of the bridging P-O bond.

8.
FEBS J ; 285(10): 1886-1906, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29654717

RESUMEN

The twin-arginine translocase (Tat) transports folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. In Gram-negative bacteria and chloroplasts, the translocon consists of three subunits, TatA, TatB, and TatC, of which TatA is responsible for the actual membrane translocation of the substrate. Herein we report on the structure, dynamics, and lipid interactions of a fully functional C-terminally truncated 'core TatA' from Arabidopsis thaliana using solution-state NMR. Our results show that TatA consists of a short N-terminal transmembrane helix (TMH), a short connecting linker (hinge) and a long region with propensity to form an amphiphilic helix (APH). The dynamics of TatA were characterized using 15 N relaxation NMR in combination with model-free analysis. The TMH has order parameters characteristic of a well-structured helix, the hinge is somewhat less rigid, while the APH has lower order parameters indicating structural flexibility. The TMH is short with a surprisingly low protection from solvent, and only the first part of the APH is protected to some extent. In order to uncover possible differences in TatA's structure and dynamics in detergent compared to in a lipid bilayer, fast-tumbling bicelles and large unilamellar vesicles were used. Results indicate that the helicity of TatA increases in both the TMH and APH in the presence of lipids, and that the N-terminal part of the TMH is significantly more rigid. The results indicate that plant TatA has a significant structural plasticity and a capability to adapt to local environments.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Membrana Dobles de Lípidos , Espectroscopía de Resonancia Magnética/métodos , Micelas , Sistema de Translocación de Arginina Gemela/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Arabidopsis/fisiología , Transporte Biológico , Lípidos/química , Homología de Secuencia de Aminoácido , Solventes/química
9.
Proc Natl Acad Sci U S A ; 115(12): 3048-3053, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507228

RESUMEN

The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Simulación por Computador , Citocromos c/química , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/metabolismo , Lípidos/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Chembiochem ; 19(5): 444-447, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29240987

RESUMEN

The Saccharomyces cerevisiae mitochondrial respiratory supercomplex factor 2 (Rcf2) plays a role in assembly of supercomplexes composed of cytochrome bc1 (complex III) and cytochrome c oxidase (complex IV). We expressed the Rcf2 protein in Escherichia coli, refolded it, and reconstituted it into dodecylphosphocholine (DPC) micelles. The structural properties of Rcf2 were studied by solution NMR, and near complete backbone assignment of Rcf2 was achieved. The secondary structure of Rcf2 contains seven helices, of which five are putative transmembrane (TM) helices, including, unexpectedly, a region formed by a charged 20-residue helix at the C terminus. Further studies demonstrated that Rcf2 forms a dimer, and the charged TM helix is involved in this dimer formation. Our results provide a basis for understanding the role of this assembly/regulatory factor in supercomplex formation and function.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Detergentes/química , Micelas , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/citología
11.
Biochim Biophys Acta ; 1858(9): 2097-2105, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27317394

RESUMEN

Solution-state NMR requires small membrane mimetic systems to allow for acquiring high-resolution data. At the same time these mimetics should faithfully mimic biological membranes. Here we characterized two novel fast-tumbling bicelle systems with lipids from two Escherichia coli strains. While strain 1 (AD93WT) contains a characteristic E. coli lipid composition, strain 2 (AD93-PE) is not capable of synthesizing the most abundant lipid in E. coli, phosphatidylethanolamine. The lipid and acyl chain compositions were characterized by (31)P and (13)C NMR. Depending on growth temperature and phase, the lipid composition varies substantially, which means that the bicelle composition can be tuned by using lipids from cells grown at different temperatures and growth phases. The hydrodynamic radii of the bicelles were determined from translational diffusion coefficients and NMR spin relaxation was measured to investigate lipid properties in the bicelles. We find that the lipid dynamics are unaffected by variations in lipid composition, suggesting that the bilayer is in a fluid phase under all conditions investigated here. Backbone glycerol carbons are the most rigid positions in all lipids, while head-group carbons and the first carbons of the acyl chain are somewhat more flexible. The flexibility increases down the acyl chain to almost unrestricted motion at its end. Carbons in double bonds and cyclopropane moieties are substantially restricted in their motional freedom. The bicelle systems characterized here are thus found to faithfully mimic E. coli inner membranes and are therefore useful for membrane interaction studies of proteins with E. coli inner membranes by solution-state NMR.


Asunto(s)
Escherichia coli/química , Lípidos de la Membrana/química , Micelas
12.
Biophys J ; 109(3): 552-63, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26244737

RESUMEN

The glycosyltransferase WaaG is involved in the synthesis of lipopolysaccharides that constitute the outer leaflet of the outer membrane in Gram-negative bacteria such as Escherichia coli. WaaG has been identified as a potential antibiotic target, and inhibitor scaffolds have previously been investigated. WaaG is located at the cytosolic side of the inner membrane, where the enzyme catalyzes the transfer of the first outer-core glucose to the inner core of nascent lipopolysaccharides. Here, we characterized the binding of WaaG to membrane models designed to mimic the inner membrane of E. coli. Based on the crystal structure, we identified an exposed and largely α-helical 30-residue sequence, with a net positive charge and several aromatic amino acids, as a putative membrane-interacting region of WaaG (MIR-WaaG). We studied the peptide corresponding to this sequence, along with its bilayer interactions, using circular dichroism, fluorescence quenching, fluorescence anisotropy, and NMR. In the presence of dodecylphosphocholine, MIR-WaaG was observed to adopt a three-dimensional structure remarkably similar to the segment in the crystal structure. We found that the membrane interaction of WaaG is conferred at least in part by MIR-WaaG and that electrostatic interactions play a key role in binding. Moreover, we propose a mechanism of anchoring WaaG to the inner membrane of E. coli, where the central part of MIR-WaaG inserts into one leaflet of the bilayer. In this model, electrostatic interactions as well as surface-exposed Tyr residues bind WaaG to the membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Glucosiltransferasas/química , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Datos de Secuencia Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA