Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Leukemia ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39443737

RESUMEN

Unraveling vulnerabilities in chronic lymphocytic leukemia (CLL) represents a key approach to understand molecular basis for its indolence and a path toward developing tailored therapeutic approaches. In this study, we found that CLL cells are particularly sensitive to the inhibitory action of abundant serum protein, apolipoprotein E (ApoE). Physiological concentrations of ApoE affect CLL cell viability and inhibit CD40-driven proliferation. Transcriptomics of ApoE-treated CLL cells revealed a signature of redox and metal disbalance which prompted us to explore the underlying mechanism of cell death. We discover, on one hand, that ApoE treatment of CLL cells induces lipid peroxidation and ferroptosis. On the other hand, we find that ApoE is a copper-binding protein and that intracellular copper regulates ApoE toxicity. ApoE regulation tends to be lost in aggressive CLL. CLL cells from patients with high leukocyte counts are less sensitive to ApoE inhibition, while resistance to ApoE is possible in transformed CLL cells from patients with Richter syndrome (RS). Nevertheless, both aggressive CLL and RS cells maintain sensitivity to drug-induced ferroptosis. Our findings suggest a natural suppression axis that mediates ferroptotic disruption of CLL cell proliferation, building up the rationale for choosing ferroptosis as a therapeutic target in CLL and RS.

2.
Commun Biol ; 7(1): 1226, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349621

RESUMEN

Copper plays a key role in host-pathogen interaction. We find that during Leishmania major infection, the parasite-harboring macrophage regulates its copper homeostasis pathway in a way to facilitate copper-mediated neutralization of the pathogen. Copper-ATPase ATP7A transports copper to amastigote-harboring phagolysosomes to induce stress on parasites. Leishmania in order to evade the copper stress, utilizes a variety of manipulative measures to lower the host-induced copper stress. It induces deglycosylation and degradation of host-ATP7A and downregulation of copper importer, CTR1 by cysteine oxidation. Additionally, Leishmania induces CTR1 endocytosis that arrests copper uptake. In mouse model of infection, we report an increase in systemic bioavailable copper in infected animals. Heart acts as the major organ for diverting its copper reserves to systemic circulation to fight-off infection by downregulating its CTR1. Our study explores reciprocal mechanism of manipulation of host copper homeostasis pathway by macrophage and Leishmania to gain respective advantages in host-pathogen interaction.


Asunto(s)
ATPasas Transportadoras de Cobre , Cobre , Homeostasis , Leishmania major , Leishmaniasis Cutánea , Macrófagos , Animales , Cobre/metabolismo , Leishmania major/fisiología , Ratones , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Macrófagos/parasitología , Macrófagos/metabolismo , Transportador de Cobre 1/metabolismo , Femenino , Interacciones Huésped-Patógeno , Interacciones Huésped-Parásitos
3.
Proc Natl Acad Sci U S A ; 121(39): e2320611121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288174

RESUMEN

Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cobre , Homeostasis , Mitocondrias , Neuroglía , Estrés Oxidativo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocondrias/metabolismo , Cobre/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Supervivencia Celular , Neuronas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(28): e2401579121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968123

RESUMEN

Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.


Asunto(s)
Elementos de Respuesta Antioxidante , Hierro , Humanos , Hierro/metabolismo , Colorantes Fluorescentes/química , Factor 2 Relacionado con NF-E2/metabolismo , Ferritinas/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Línea Celular Tumoral , Antioxidantes/metabolismo
5.
ACS Appl Mater Interfaces ; 16(23): 29844-29855, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829261

RESUMEN

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.


Asunto(s)
Cobre , Indoles , Nanopartículas , Polímeros , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas , Cobre/química , Cobre/farmacología , Polímeros/química , Polímeros/farmacología , Indoles/química , Indoles/farmacología , Humanos , Animales , Ratones , Nanopartículas/química , Femenino , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Oxidación-Reducción , Nanomedicina , Proliferación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Superóxido Dismutasa-1/metabolismo
6.
J Hazard Mater ; 476: 135003, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38917627

RESUMEN

Bivalve hemocytes are oyster immune cells composed of several cellular subtypes with different functions. Hemocytes accumulate high concentrations of copper (Cu) and exert critical roles in metal sequestration and detoxification in oysters, however the specific biochemical mechanisms that govern this have yet to be fully uncovered. Herein, we demonstrate that Cu(I) is predominately sequestered in lysosomes via the Cu transporter ATP7A in hemocytes to reduce the toxic effects of intracellular Cu(I). We also found that Cu(I) is translocated along tunneling nanotubes (TNTs) relocating from high Cu(I) cells to low Cu(I) cells, effectively reducing the burden caused by overloaded Cu(I), and that ATP7A facilitates the efflux of intracellular Cu(I) in both TNTs and hemocyte subtypes. We identify that elevated glutathione (GSH) contents and heat-shock protein (Hsp) levels, as well as the activation of the cell cycle were critical in maintaining the cellular homeostasis and function of hemocytes exposed to Cu. Cu exposure also increased the expression of membrane proteins (MYOF, RalA, RalBP1, and cadherins) and lipid transporter activity which can induce TNT formation, and activated the lysosomal signaling pathway, promoting intercellular lysosomal trafficking dependent on increased hydrolase activity and ATP-dependent activity. This study explores the intracellular and intercellular transport and detoxification of Cu in oyster hemocytes, which may help in understanding the potential toxicity and fate of metals in marine animals.


Asunto(s)
Cobre , Hemocitos , Animales , Hemocitos/metabolismo , Hemocitos/efectos de los fármacos , Cobre/toxicidad , Cobre/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Glutatión/metabolismo , Inactivación Metabólica , Ostreidae/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética
7.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746126

RESUMEN

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn2+-binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn2+-binding sites (CX2C-HX2C) which are potentially implicated in Cu+-binding and competition with Zn2+. Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu+-binding affinity for two and four Cu+ ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins, acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.

8.
Chem Rev ; 124(9): 5846-5929, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657175

RESUMEN

Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.


Asunto(s)
Colorantes Fluorescentes , Oxidación-Reducción , Colorantes Fluorescentes/química , Humanos , Metales/química , Metales/metabolismo , Animales , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Microscopía Fluorescente
9.
Front Mol Biosci ; 11: 1354627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389896

RESUMEN

Copper (Cu) is an essential trace element, however an excess is toxic due to its redox properties. Cu homeostasis therefore needs to be tightly regulated via cellular transporters, storage proteins and exporters. An imbalance in Cu homeostasis has been associated with neurodegenerative disorders such as Wilson's disease, but also Alzheimer's or Parkinson's disease. In our current study, we explored the utility of using Caenorhabditis elegans (C. elegans) as a model of Cu dyshomeostasis. The application of excess Cu dosing and the use of mutants lacking the intracellular Cu chaperone atox-1 and major Cu storage protein ceruloplasmin facilitated the assessment of Cu status, functional markers including total Cu levels, labile Cu levels, Cu distribution and the gene expression of homeostasis-related genes. Our data revealed a decrease in total Cu uptake but an increase in labile Cu levels due to genetic dysfunction, as well as altered gene expression levels of Cu homeostasis-associated genes. In addition, the data uncovered the role ceruloplasmin and atox-1 play in the worm's Cu homeostasis. This study provides insights into suitable functional Cu markers and Cu homeostasis in C. elegans, with a focus on labile Cu levels, a promising marker of Cu dysregulation during disease progression.

10.
Proc Natl Acad Sci U S A ; 119(43): e2202736119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252013

RESUMEN

Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.


Asunto(s)
Cobre , Colorantes Fluorescentes , Cobre/metabolismo , Colorantes Fluorescentes/química , Glutatión/metabolismo , Imidazoles , Oncogenes , Oxidación-Reducción
11.
Bioconjug Chem ; 27(5): 1222-6, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27017898

RESUMEN

Bioorthogonal chemistry has been applied to study a multitude of biological processes in complex environments through incorporation and detection of small functional groups. However, few reactions are known to be compatible with each other to allow for studies of more than one biomolecule simultaneously. Here we describe a dual labeling method wherein two stereoelectronically contrasting nitrone tags are incorporated into bacteria peptidoglycan and detected via strain-promoted alkyne-nitrone cycloaddition (SPANC) simultaneously. Furthermore, we show orthogonality with the azide functionality broadening the potential for simultaneous biomolecular target labeling in less accommodating metabolic pathways. We also demonstrate the simultaneous labeling of two different food-associated bacteria, L. innocua (a model for the food-born pathogen L. monocytogenes) and L. lactis (a fermentation bacterium). The ability to monitor multiple processes and even multiple organisms concurrently through nitrone/nitrone or nitrone/azide incorporation strengthens the current bioorthogonal toolbox and gives rise to robust duplex labeling of organisms to potentiate the studies of rapid biological phenomena.


Asunto(s)
Alquinos/química , Reacción de Cicloadición , Listeria/química , Óxidos de Nitrógeno/química , Peptidoglicano/química , Coloración y Etiquetado , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...