Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Vet Sci ; 11: 1328513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694479

RESUMEN

Introduction: Despite the potential health risks associated with feeding raw and non-traditional diets, the use of these diets in dogs is increasing, yet the health outcomes associated with these diets is not well understood. This study investigates the effect of feeding dogs a kibble or raw meat-based diets on fecal microbiota composition, serum metabolomics and inflammatory markers. Methods: Clinically healthy dogs with a history of consuming either kibble (KD, n = 27) or raw meat-based diets (RMBD, n = 28) for more than 1 year were enrolled. Dogs were fed a standardized diet of either a single brand of KD or RMBD for 28 days. Serum and fecal samples were collected for analysis of microbiota, metabolomics, and inflammatory markers. Multiple regression analysis was performed for each of the metabolites and inflammatory markers, with feed group, age and BCS included as independent variables. Results: The fecal microbiota composition differed between the KD and RMBD groups. Beta-diversity and some indices of alpha-diversity (i.e., Shannon and Simpson) were different between the two diet groups. Sixty- three serum metabolites differed between KD and RMBD-fed dogs with the majority reflecting the differences in macronutrient composition of the two diets.Fecal IAP, IgG and IgA were significantly higher in RMBD dogs compared to KD dogs, while systemic markers of inflammation, including serum c-reactive protein (CRP), galectin, secretory receptor of advanced glycation end-products (sRAGE), haptoglobin, and serum IgG were similar in dogs fed either diet. Discussion: Diet composition significantly affected fecal microbiota composition and metabolome. Although it had a potentially beneficial effect on local inflammatory markers, feeding RMBD had no impact on systemic inflammation. The influence of these changes on long term health outcomes provides an area for future study.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673954

RESUMEN

The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle ß1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.


Asunto(s)
Pollos , Dieta con Restricción de Proteínas , Metabolismo Energético , Respuesta al Choque Térmico , Animales , Pollos/metabolismo , Masculino , Termogénesis , Alimentación Animal , Ingestión de Alimentos
3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052683

RESUMEN

The objective of this experiment was to determine if supplying additional propionate to the rumen alters dry matter intake (DMI), feeding behavior, glucose metabolism, and rumen fluid metabolites in steers fed a finishing diet. Ruminally cannulated steers (n = 6) were fed a finishing diet ad libitum. Steers were randomly assigned to one of three treatments in a 3 × 6 Latin rectangle design with three 15 d periods. Treatments of no Ca propionate (Control), 100 g/d (Low), or 300 g/d (High) were ruminally dosed twice daily. Individual intake was measured using an Insentec feeding system. Pre-feeding blood samples were collected on day 7 and rumen fluid samples were collected on day 13. An intravenous glucose tolerance test (IVGTT) was conducted on day 14 and liver biopsies were collected on day 15. Liver samples were analyzed for expression of genes involved in gluconeogenesis. Data were analyzed using a mixed model with period, treatment, day, and their interaction included, with day and minute within period as a repeated measure and steer as a random effect. Meal size (P = 0.049), meal frequency (P = 0.046), and DMI (P < 0.001) were decreased in High steers. Day 7 plasma glucose (P = 0.23) and lactate (P = 0.47) were not affected by treatment, but insulin was decreased (P = 0.008) and non-esterified fatty acids were increased (P = 0.044) in the High treatment compared with the Control. Rumen fluid lactate was decreased (P = 0.015) in the High treatment compared with the Low treatment. Total VFA concentrations did not differ (P = 0.88) between treatments. There was treatment × time interaction for proportions of acetate and propionate (P < 0.001) and the acetate:propionate ratio (P = 0.005). The effect on acetate was due to a decrease in the High treatment 2 h after dosing the treatment. Propionate proportions were greater in the High treatment than the Control at all time points and differed from the Low except at 0 h. Propionate treatments had no major effects on the glucose and insulin parameters observed in the IVGTT other than a tendency (P = 0.09) for an increased insulin time to peak. These data indicate that exogenous propionate decreases DMI but the decrease in propionate from fermentation due to reduced DMI might negate the supply of exogenous propionate in VFA supply to the animal. Mechanisms other than hepatic oxidation of propionate might be responsible for DMI regulation.


Propionate metabolism by the liver is thought to be a key regulator of appetite and feed intake of animals, including cattle. Previous research has shown that providing propionate to the rumen of cattle decreases feed intake. Propionate is also a major contributor to glucose for cattle to use as an energy source for growth and maintenance. In this experiment, it was hypothesized that increasing ruminal propionate would depress feed intake and decrease insulin sensitivity. Supplying 300 g of propionate a day to the rumen decreased feed intake and increased the proportion of propionate in the rumen fluid of steers. However, when propionate production was calculated based on feed intake, there was likely no difference in propionate supply to the animal. The lack of increase in propionate supply to the animal could explain the lack of effect on glucose metabolism, insulin sensitivity, and liver gene expression. The lack of an increase in propionate also indicates that the effect of propionate on feed intake could be due to alternative mechanisms than liver metabolism of propionate.


Asunto(s)
Insulinas , Propionatos , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Digestión , Fermentación , Glucosa/metabolismo , Lactatos/metabolismo , Lactatos/farmacología , Propionatos/farmacología , Propionatos/metabolismo , Rumen/metabolismo
4.
Animals (Basel) ; 13(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978502

RESUMEN

This study aimed to investigate the interaction of fatty acid (FA) source [calcium salt of soybean oil (n-6 FA) vs. calcium salt of linseed oil (n-3 FA) both 3% DM basis] with protein content (18% vs. 22% CP, based on DM) on growth performance, blood metabolites, immune function, skeletal growth indices, urinary purine derivatives (PD), and microbial protein synthesis (MPS) in young dairy calves. Forty 3-day-old calves (20 females and 20 males) with a starting body weight (BW) of 40.2 kg were assigned in a completely randomized block design in a 2 × 2 factorial arrangement of treatments. Experimental diets were: (1) n-6 FA with 18% CP (n-6-18CP), (2) n-6 FA with 22% CP (n-6-22CP), (3) n-3 FA with 18% CP (n-3-18CP), and (4) n-3 FA with 22% CP (n-3-22CP). Starter feed intake and average daily gain (ADG) were not influenced by experimental diets (p > 0.05). However, before weaning and the entire period, feed efficiency (FE) was greater in calves fed n-3 FA compared to n-6 FA (p < 0.05). Heart girth (weaning, p < 0.05) and hip height (weaning, p < 0.05 and final, p < 0.01) were highest among experimental treatments in calves who received n-3-22CP diets. The greatest blood glucose (p < 0.05) and insulin (p < 0.01) concentrations in the pre-weaning period and the lowest serum concentration of tumor necrosis factor (before weaning, p < 0.05) were observed in calves fed the n-3-22CP diet. However, the greatest blood urea N (before weaning, p < 0.05; after weaning, p < 0.05) and urinary N excretion (p < 0.05) were found in calves fed n-6-22CP diets compared to other experimental arrangements. In conclusion, offering calves with Ca-salt of n-3 FA along with 22% CP content may be related to improved nitrogen efficiency and immune function.

5.
Metabolites ; 13(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677013

RESUMEN

A mixture of valine (Val) and isoleucine (Ile) not only decreases the negative impact of very low protein (VLP) diets on the growth of pigs, but also influences the nitrogen (N) balance and lipid metabolism; however, the underlying pathways are not well understood. This study aimed to investigate the effect of dietary Val and Ile on lipogenesis, lipolysis, and ureagenesis under protein restriction. After one week of acclimation, forty three-week-old pigs were randomly assigned to following dietary treatments (n = 8/group) for 5 weeks: positive control (PC): normal protein diet; negative control (NC): VLP diet; HV: NC supplemented with Val; HI: NC supplemented with Ile; and HVI: NC supplemented with both Val and Ile. HVI partially improved the body weight and completely recovered the feed intake (FI) of pigs fed with NC. HVI increased thermal radiation and improved the glucose clearance. HVI had a lower blood triglyceride than PC and blood urea N than NC. NC and HV promoted lipogenesis by increasing the transcript of fatty acid synthase (FAS) in the liver and lipoprotein lipase (LPL) in adipose tissue but reducing hormone-sensitive lipase (HSL) in the liver. HVI reduced the increased rate of lipogenesis induced by the NC group through normalizing the mRNA abundance of hepatic FAS, sterol regulatory element binding transcription factor 1, and HSL and LPL in adipose tissue. NC, HV, HI, and HVI reduced the ureagenesis by decreasing the protein abundance of carbamoyl phosphate synthetase I, ornithine transcarboxylase, and arginosuccinate lyase in the liver. Overall, HVI improved the growth, FI, and glucose clearance, and decreased the rate of lipogenesis induced by VLP diets.

6.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203511

RESUMEN

A beneficial effect of corn-expressed phytase (CEP) on the growth performance of pigs fed with very low-protein (VLP) diets was previously shown. Little is known whether this improvement is related to alterations in the expression profiles of blood proteins and amino acids (AAs). The objective of this study was to investigate whether supplementation of VLP, low-calcium (Ca), and low-P diets with a CEP would alter the blood AAs and protein expression profiles in pigs. Forty-eight pigs were subjected to one of the following groups (n = 8/group) for 4 weeks: positive control (PC), negative control-reduced protein (NC), NC + low-dose CEP (LD), NC + high-dose CEP (HD), LD with reduced Ca/P (LDR), and HD with reduced Ca/P (HDR). Plasma leucine and phenylalanine concentrations were reduced in NC; however, the LD diet recovered the concentration of these AAs. Serum proteomics analysis revealed that proteins involved with growth regulation, such as selenoprotein P were upregulated while the IGF-binding proteins family proteins were differentially expressed in CEP-supplemented groups. Furthermore, a positive correlation was detected between growth and abundance of proteins involved in bone mineralization and muscle structure development. Taken together, CEP improved the blood profile of some essential AAs and affected the expression of proteins involved in the regulation of growth.


Asunto(s)
6-Fitasa , Antifibrinolíticos , Animales , Porcinos , Calcio , Aminoácidos , Proteómica , Calcio de la Dieta , Dieta con Restricción de Proteínas , Fósforo
7.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499225

RESUMEN

Little is known whether a combination Ile and added Val improves the growth of pigs offered very low protein (VLP) diets through changes in nutrients digestibility and gut microbiota. The objective of this study was to investigate the effect of a mixture of Val above and Ile at NRC levels on growth, nutrient digestibility and gut microbiota in pigs fed with VLP diets. Forty, weaned piglets were assigned to: positive control: normal-protein-diet; negative control (NC): VLP diet supplemented with first four limiting amino acids; VA: NC with Val above NRC; IL: NC with Ile at NRC level; VAIL: NC with Val above and Ile at NRC levels. While both VAIL and VA groups completely recovered the inhibitory effects of VLP diets on feed intake, only VAIL partially recovered the negative effects of VLP diets on growth performance. VAIL and VA increased the thermal radiation and decreased the digestibility of nitrogen. NC increased the relative abundance of Pasteurellaceae and Enterobacteriaceae in the colon. VAIL had a higher abundance of colonic Actinobacteria, Enterococcus, and Brevibacillus and the colon content of VA was more enriched with Mogibacterium. Overall, VAIL partially improved the growth performance which is likely linked with alterations in gut microbiota composition.


Asunto(s)
Dieta con Restricción de Proteínas , Isoleucina , Porcinos , Animales , Alimentación Animal/análisis , Valina/farmacología , Dieta , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales de los Animales , Digestión
8.
J Anim Sci ; 100(5)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35552417

RESUMEN

Low birth weight (LBW) is associated with metabolic disorders in early life. While dietary l-tryptophan (Trp) can ameliorate postprandial plasma triglycerides (TG) disposal in LBW piglets, the genetic and biological basis underlying Trp-caused alterations in lipid metabolism is poorly understood. In this study, we collected 24 liver samples from 1-mo-old LBW and normal birth weight (NBW) piglets supplemented with different concentrations of dietary Trp (NBW with 0% Trp, N0; LBW with 0% Trp, L0; LBW with 0.4% Trp, L4; LBW with 0.8% Trp, L8; N = 6 in each group.) and conducted systematic, transcriptome-wide analysis using RNA sequencing (RNA-seq). We identified 39 differentially expressed genes (DEG) between N0 and L0, and genes within "increased dose effect" clusters based on dose-series expression profile analysis, enriched in fatty acid response of gene ontology (GO) biological process (BP). We then identified RNA-binding proteins including SRSF1, DAZAP1, PUM2, PCBP3, IGF2BP2, and IGF2BP3 significantly (P < 0.05) enriched in alternative splicing events (ASE) in comparison with L0 as control. There were significant positive and negative relationships between candidate genes from co-expression networks (including PID1, ANKRD44, RUSC1, and CYP2J34) and postprandial plasma TG concentration. Further, we determined whether these candidate hub genes were also significantly associated with metabolic and cardiovascular traits in humans via human phenome-wide association study (Phe-WAS), and analysis of mammalian orthologs suggests a functional conservation between human and pig. Our work demonstrates that transcriptomic changes during dietary Trp supplementation in LBW piglets. We detected candidate genes and related BP that may play roles on lipid metabolism restoration. These findings will help to better understand the amino acid support in LBW metabolic complications.


Low birth weight (LBW) has been associated with higher rate of mortality and morbidity and the development of metabolic complications, leaving burdens on livestock production and human health care. The feasibility of LBW metabolic restoration via postnatal nutrition compensation has been verified and the role of one of essential amino acids, l-tryptophan (Trp), on rescuing lipid metabolism in LBW was determined, while the underlying molecular mechanism and key gene regulation is little known. Our study was conducted to identify the unique molecular mechanisms between LBW and normal birth weight (NBW), and to identify the metabolic restoration related genes and biological processes after dietary Trp supplementation in LBW piglet model. We found that differentially expressed genes (DEG) between LBW and NBW were related to fatty acid response based on gene ontology enrichment analysis, and LBW piglets supplemented with Trp showed lower postprandial plasma triglycerides (TG) level as NBW, with similar expression feature of lipid metabolism related genes.


Asunto(s)
Suplementos Dietéticos , Triptófano , Animales , Peso al Nacer , Humanos , Mamíferos/metabolismo , Proteínas de Unión al ARN , RNA-Seq/veterinaria , Análisis de Secuencia de ARN/veterinaria , Factores de Empalme Serina-Arginina , Porcinos , Triglicéridos , Triptófano/metabolismo , Triptófano/farmacología
9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328720

RESUMEN

Valine (Val) alone or in combination with isoleucine (Ile) improves the growth under severe protein restriction; however, the underlying mechanisms remain unknown. In this study, we assessed whether Val/Ile-induced growth in protein-restricted pigs is associated with changes in gut development, hepatic insulin-like growth factor 1 (IGF-1) production, and blood metabolomics. Forty piglets were assigned to five dietary groups: positive control (PC) with standard protein content; low protein (LP) with very low protein content; and LP supplemented with Val (LPV), Ile (LPI), and Val and Ile (LPVI). LPVI reversed the negative effects of VLP diets on growth and gut morphology. Both LPV and LPVI restored the reduced transcript of IGF-1 while decreasing the transcript of insulin-like growth factor binding protein 1 (IGFBP1) in the liver. LPV and LPVI recovered the reduced plasma Val, glycine, and leucine concentrations, which were positively correlated with improved gut morphology and the hepatic IGF-1 gene expression and negatively correlated with hepatic IGFBP1 mRNA abundance. In conclusion, supplementation with a combination of Val and Ile into the VLP diets restored the decreased growth performance of pigs fed with these diets likely through improved gut development, hepatic IGF-1 expression and bioavailability, and plasma metabolomics profile.


Asunto(s)
Isoleucina , Valina , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta , Dieta con Restricción de Proteínas , Factor I del Crecimiento Similar a la Insulina/genética , Isoleucina/farmacología , Hígado , Metabolómica , Porcinos , Valina/farmacología
10.
J Anim Sci Biotechnol ; 13(1): 15, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35139926

RESUMEN

BACKGROUND: Very low-protein (VLP) diets negatively impact calcium (Ca) metabolism and absorption. The objective of this study was to investigate the effect of supplemental branched-chain amino acids (BCAA) and limiting amino acids (LAA) on Ca digestibility, absorption and reabsorption in pigs fed with VLP diets. Forty-eight piglets were assigned to six treatments: positive control (PC), negative control (NC), and NC containing LAA 25%, LAA 50%, LAA + BCAA 25% (LB25) and LAA + BCAA 50% (LB50) more than recommendations. RESULTS: Relative to PC or NC, LB25 and LB50 had higher digestibility of Ca and plasma Ca and phosphorus (P), but lower plasma vitamin D3. LB50 tended to increase vitamin D receptor transcript and protein in the gut, but decreased mRNA or protein abundance of parathyroid hormone 1 receptor (PTH1R), calbindin 1 (CALB1), cytochrome P450 family 27 subfamily B member 1 and occludin in small intestine. LB50 increased the transcript of cytochrome P450 family 24 subfamily A member 1 and PTH1R but decreased the transcript of transient receptor potential cation channel subfamily V member 5, CALB1 and solute carrier family 17 member 4 in kidney. CONCLUSION: Overall, BCAA increased Ca digestibility through regulating the transcellular and paracellular Ca absorption in the gut and reabsorption in kidney during protein restriction.

11.
Anim Nutr ; 7(3): 868-882, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34632118

RESUMEN

The objective of this study was to assess the growth efficiency of pigs fed with protein-restricted diets supplemented with branched-chain amino acids (BCAA) and limiting amino acids (LAA) above the recommended levels. Following 2 weeks of adaptation, 48 young barrows were weight matched and randomly assigned to 6 treatments (8 pigs/treatment) for 4 weeks: positive control (PC) with standard protein, negative control (NC) with very low protein containing LAA (i.e., Lys, Met, Thr and Trp) at recommended levels, and NC containing LAA 25% (L25), LAA 50% (L50), LAA+BCAA (i.e., Leu, Ile and Val) 25% (LB25) and LAA+BCAA 50% (LB50) more than recommendations. Feed intake (FI) and body weight (BW) were measured daily and weekly, respectively. At week 6, blood samples were collected, all pigs euthanized and tissue samples collected. The data were analyzed by univariate GLM or mixed procedure (SPSS) and the means were separated using paired Student's t-test followed by Benjamini-Hochberg correction. Relative to PC, NC had decreased FI, BW, unsupplemented plasma essential amino acids, serum insulin-like growth factor-I (IGF-I) and hypothalamic neuropeptide Y (NPY) (P < 0.01). Compared to NC, L25 or L50, LB50 had increased BW and serum IGF-I and decreased plasma serotonin and both LB25 and LB50 had higher FI, plasma BCAA, hypothalamic 5-hydroxytryptamine-receptor 2A and NPY and jejunal 5-hydroxytryptamine-receptor 7 (P < 0.01). Overall, supplementation of protein-restricted diets with increased levels of dietary BCAA partially recovered the negative effects of these diets on growth through improved IGF-I concentration and FI, which was associated with changed expression of serotonin receptors, blood AA and hypothalamic NPY.

12.
J Anim Sci ; 99(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618893

RESUMEN

The objective of this study was to investigate the effects of water quality on water intake (WI), forage intake, diet digestibility, and blood constituents in beef cows and growing beef heifers. This was a replicated 5 × 5 Latin square with five drinking water treatments within each square: 1) fresh water (Control); 2) brackish water (100 BRW treatment) with approximately 6,000 mg/kg total dissolved solids (TDS); 3) same TDS level as 100 BRW achieved by addition of NaCl to fresh water (100 SLW); 4) 50% brackish water and 50% fresh water to achieve approximately 3,000 mg/kg TDS (50 BRW); and 5) same TDS level as 50 BRW achieved by addition of NaCl to fresh water (50 SLW). Each of the five 21-d periods consisted of 14 d of adaptation and 5 d of data collection. Animals were housed individually and fed mixed alfalfa (Medicago sativa) grass hay cubes. Feed and WI were recorded daily. Data were analyzed with animal as the experimental unit. Age, treatment, and age × treatment were fixed effects, and animal ID within age was the random variable for intake, digestibility, and blood parameter data. Water and feed intake were greater than expected, regardless of age or water treatment. No treatment × age interactions were identified for WI (P = 0.71), WI expressed as g/kg body weight (BW; P = 0.70), or dry matter intake (DMI; P = 0.21). However, there was an age × treatment tendency for DMI when scaled to BW (P = 0.09) in cows consuming 100 BRW compared with fresh water. No differences were found for the other three treatments. Heifers provided 50 SLW water consumed less (P < 0.05) feed (g/kg BW) compared with heifers provided fresh water and 100 BRW. No differences (P > 0.05) in water, DMI, feed intake, or diet digestibility were found due to water quality treatment. In conclusion, under these conditions, neither absolute WI, absolute DMI, nor diet digestibility was influenced by the natural brackish or saline water used in this experiment. These results suggest that further research is necessary to determine thresholds for TDS or salinity concentration resulting in reduced water and/or feed intake and diet digestibility.


Asunto(s)
Alimentación Animal , Sales (Química) , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Digestión , Ingestión de Alimentos , Medicago sativa , Rumen
13.
J Anim Sci ; 99(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718608

RESUMEN

The objective of this study was to determine whether increasing propionate alters dry matter intake (DMI), glucose clearance rate, blood metabolites, insulin concentrations, and hepatic gene expression in steers fed a finishing diet. Holstein steers (n = 15; BW = 243 ± 3.6 kg) were individually fed a finishing diet ad libitum. Steers were allocated by body weight (BW) to receive: no Ca propionate (Control), 100 g/d Ca propionate (Low), or 300 g/d Ca propionate (High) in the diet. Orts were collected and weighed daily to determine DMI. Blood samples were collected on days 0, 7, and 21, and BW recorded on days 0, 14, and 28. An intravenous glucose tolerance test (IVGTT) was conducted on days 14 and 28 of the trial. Liver biopsies were collected on day 33 for gene expression analysis. Blood samples were analyzed for whole blood glucose and lactate, plasma non-esterified fatty acids (NEFAs), and insulin concentrations. Data were analyzed using a mixed model with treatment, day and their interaction included, with day and minute as a repeated measure. The control treatment had greater (P < 0.01) DMI than low and high steers. Body weight was increased in control steers on days 14 and 28 compared with the steers receiving the High treatment (P = 0.03 for the interaction). Blood glucose concentrations tended (P = 0.09) to be higher on day 21 than days 0 and 7 but was not affected by treatment (P = 0.58). Plasma NEFA concentrations were lower (P = 0.05) for control steers than other treatments, and greater (P = 0.002) on day 0 than days 7 and 21. Blood lactate concentrations were greater (P = 0.05) on day 7, than days 0 and 21, but not affected by treatment (P = 0.13). High steers had greater plasma insulin concentrations in response to the IVGTT than steers on the other treatments (P = 0.001). There was no treatment (P ≥ 0.16) or day effect (P ≥ 0.36) on glucose peak, plateau, or clearance rate. High steers had greater expression of solute carrier family 16 member 1 (SLC16A1; P = 0.05) and tended to have greater hepatic expression of solute carrier family 2 member 2 (SLC2A2; P = 0.07). These data indicate that increased propionate may decrease DMI and insulin sensitivity.


Asunto(s)
Alimentación Animal , Propionatos , Alimentación Animal/análisis , Animales , Glucemia , Dieta/veterinaria
14.
Nutrients ; 13(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34444719

RESUMEN

Low birthweight (LBW) is associated with metabolic complications, such as glucose and lipid metabolism disturbances in early life. The objective of this study was to assess: (1) the effect of dietary tryptophan (Trp) on glucose and fat metabolism in an LBW piglet model, and (2) the role peripheral 5-hydroxytryptamine type 3 (5HT3) receptors in regulating the feeding behavior in LBW piglets fed with Trp-supplemented diets. Seven-day-old piglets were assigned to 4 treatments: normal birthweight-0%Trp (NBW-T0), LBW-0%Trp (LBW-T0), LBW-0.4%Trp (LBW-T0.4), and LBW-0.8%Trp (LBW-T0.8) for 3 weeks. Compared to LBW-T0, the blood glucose was decreased in LBW-T0.8 at 60 min following the meal test, and the triglycerides were lower in LBW-T0.4 and LBW-T0.8. Relative to LBW-T0, LBW-T0.8 had a lower transcript and protein abundance of hepatic glucose transporter-2, a higher mRNA abundance of glucokinase, and a lower transcript of phosphoenolpyruvate carboxykinase. LBW-T0.4 tended to have a lower protein abundance of sodium-glucose co-transporter 1 in the jejunum. In comparison with LBW-T0, LBW-T0.4 and LBW-T0.8 had a lower transcript of hepatic acetyl-CoA carboxylase, and LBW-T0.4 had a higher transcript of 3-hydroxyacyl-CoA dehydrogenase. Blocking 5-HT3 receptors with ondansetron reduced the feed intake in all groups, with a transient effect on LBW-T0, but more persistent effect on LBW-T0.8 and NBW-T0. In conclusion, Trp supplementation reduced the hepatic lipogenesis and gluconeogenesis, but increased the glycolysis in LBW piglets. Peripheral serotonin is likely involved in the regulation of feeding behavior, particularly in LBW piglets fed diets supplemented with a higher dose of Trp.


Asunto(s)
Suplementos Dietéticos , Glucosa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Triptófano/administración & dosificación , Tejido Adiposo Blanco/metabolismo , Animales , Animales Recién Nacidos , Peso al Nacer , Glucemia/análisis , Peso Corporal , Colesterol/sangre , Dieta , Hipotálamo/metabolismo , Insulina/sangre , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/crecimiento & desarrollo , Intestino Delgado/anatomía & histología , Intestino Delgado/crecimiento & desarrollo , Modelos Animales , Ondansetrón/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Porcinos/crecimiento & desarrollo , Triglicéridos/sangre
15.
Front Nutr ; 8: 655833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055853

RESUMEN

Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.

16.
J Anim Sci ; 99(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33939804

RESUMEN

The interest and demand for healthy and less processed foods for human consumption have been mirrored in the pet industry, with an explosion of alternative diets available. Several nontraditional feeding methodologies including raw meat-based diets (RMBDs) are believed by many dog owners to be superior to traditional extruded commercial dog foods. Despite the strong opinions, limited data are available comparing objective health measures among healthy dogs fed using different methods of diet preparation. Therefore, we compared health markers in client-owned dogs fed an RMBD to markers in dogs fed a high-quality extruded kibble. We hypothesized that healthy adult dogs fed RMBD would show differences in biochemical and hematological parameters and improved clinical health scores (e.g., dental, external ear canal, and integument scores) compared with dogs fed a kibble diet. A cross-sectional observational study was performed comparing hematology, serum biochemistry, urinalysis management history, and clinical health scores in healthy client-owned dogs reported as fed RMBD (n = 28) or kibble (n = 27) for >1 yr. Dental, external ear canal, and integument health scores were assigned by a single veterinary evaluator blinded to feed group, using a scale where 0 was normal and 3 was most severely affected. Spearman correlation coefficient (rs) was calculated to assess the strength and direction of the relationship of biochemical outcomes with age and body condition score (BCS), while analysis of variance was used to determine if biochemical analytes differed by breed or gender. Biochemical data were analyzed using multiple linear regression models, adjusting for the covariates gender, breed, age, and BCS. A composite clinical health score, (CCS) = 9 - (dental score + otitis score + integument score), was compared between feeding groups using Mann-Whitney test. Serum alkaline phosphatase activity (P < 0.001) and globulin concentration (P < 0.001) were lower, while lymphocyte count (P < 0.05) was higher in dogs fed RMBD. No differences were found in urinalysis between diet groups. Dogs fed RMBD showed a slight improvement in CCS compared with kibble-fed dogs (CCS: P = 0.03). Owner management significantly differed with a greater likelihood of management interventions including dietary supplements and sporting activities in the RMBD group. Further work is needed to specifically determine the impact of diet processing and nutrient content on canine health.


Asunto(s)
Alimentación Animal , Carne , Alimentación Animal/análisis , Animales , Estudios Transversales , Dieta/veterinaria , Perros , Nutrientes
17.
Animals (Basel) ; 11(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672517

RESUMEN

The objective of this study was to investigate the effect of a phytogenic water additive (PWA) on growth performance and underlying factors involved in pigs fed with low-protein (LP)/high-carbohydrate diets. Forty-eight weaned barrows were allotted to six treatments for 4 weeks: CON-NS, control (CON) diet-no PWA; CON-LS, CON diet-low dose PWA (4 mL/L); CON-HS, CON diet-high dose PWA (8 mL/L); LP-NS, LP diet-no PWA; LP-LS, LP diet-low dose PWA; LP-HS, LP diet-high dose PWA. Relative to CON-NS, pigs fed with CON-HS had increased average daily gain, body weight and serum calcium (Ca) and phosphorous (P) and had decreased mRNA abundance of solute carrier family 7 member 11 and solute carrier family 6 member 19 in jejunum. Compared to LP-NS, pigs fed with LP-HS had increased muscle lean%, decreased muscle fat%, decreased serum Ca and increased serum P. Compared to their NS counterparts, CON-LS, CON-HS, and LP-LS increased the concentration of plasma essential AA and those fed with CON-HS and LP-HS tended to reduce the abundance of the solute carrier family 7 member 1 transcript in skeletal muscle. Thus, PWA improved the performance of weaned pigs fed with protein-adequate diets likely through increased blood essential AA and affected the muscle composition when dietary protein was deficient.

18.
Animals (Basel) ; 10(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092137

RESUMEN

The objective of this study was to assess the effect of a novel corn-expressed phytase (CEP) on growth, nutrients digestibility, bone characteristics and fecal microbiota of pigs fed with very low-protein, -calcium (Ca) and -phosphorous (P) diets. Forty-eight barrows were subjected to 6 groups for 4 weeks: positive control-adequate protein (PC), negative control-reduced protein (NC), NC + low-dose CEP, i.e., 2000 FTU/kg (LD), NC + high-dose CEP, i.e., 4000 FTU/kg (HD), LD with 0.12% unit reduced Ca and 0.15% unit reduced available P (LDR), and HD with 0.12% unit reduced Ca and 0.15% unit reduced available P (HDR). Compared to NC, LD and HDR had a higher average daily gain (ADG) and gain:protein ratio (G:P), HD and HDR had greater apparent fecal digestibility of Ca and P and bone mineral density and LDR and HDR had lower serum osteocalcin. The feces of LD was enriched in Lachnospiraceae, while the HD had a higher abundance of Succinvibrio and LDR had a higher abundance of Bifidobacterium and Actinobacteria. In conclusion, supplementation of protein-restricted diets with a CEP decreased their negative effects on ADG and G:P ratio, increased the digestibility of Ca and P regardless of the levels of these minerals in the diet, improved bone characteristics and produced differential effects on fecal bacterial population.

19.
Sci Rep ; 10(1): 15859, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985541

RESUMEN

Feeding pigs with very-low protein (VLP) diets while supplemented with limiting amino acids (AA) results in decreased growth. The objective of this study was to determine if supplementing VLP diets with branched-chain AA (BCAA) would reverse the negative effects of these diets on growth and whether this is associated with alterations in energy balance, blood metabolomics and fecal microbiota composition. Twenty-four nursery pigs were weight-matched, individually housed and allotted into following treatments (n = 8/group): control (CON), low protein (LP) and LP supplemented with BCAA (LP + BCAA) for 4 weeks. Relative to CON, pigs fed with LP had lower feed intake (FI) and body weight (BW) throughout the study, but those fed with LP + BCAA improved overall FI computed for 4 weeks, tended to increase the overall average daily gain, delayed the FI and BW depression for ~ 2 weeks and had transiently higher energy expenditure. Feeding pigs with LP + BCAA impacted the phenylalanine and protein metabolism and fatty acids synthesis pathways. Compared to CON, the LP + BCAA group had higher abundance of Paludibacteraceae and Synergistaceae and reduced populations of Streptococcaceae, Oxyphotobacteria_unclassified, Pseudomonadaceae and Shewanellaceae in their feces. Thus, supplementing VLP diets with BCAA temporarily annuls the adverse effects of these diets on growth, which is linked with alterations in energy balance and metabolic and gut microbiome profile.


Asunto(s)
Aminoácidos de Cadena Ramificada/análisis , Dieta con Restricción de Proteínas , Suplementos Dietéticos/análisis , Metabolismo Energético/efectos de los fármacos , Heces/microbiología , Metabolómica , Microbiota/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Ingestión de Alimentos/efectos de los fármacos , Respiración/efectos de los fármacos , Porcinos
20.
Animals (Basel) ; 10(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977427

RESUMEN

The effects of a grain source (corn grain (CG) vs. barley grain (BG)) and starter protein content (19% vs. 22% CP, dry matter basis) on growth performance, digestibility, ruminal fermentation, and blood metabolites were evaluated in Holstein dairy calves. Forty 3-day-old female calves with a starting body weight of 39.3 kg were subjected to four treatments in a completely randomized design with two by two factorial arrangements. Treatments were: (1) CG + 19% CP (CG-19CP); (2) CG + 22% CP (CG-22CP); (3) BG + 19% CP (BG-19CP); and (4) BG + 22% CP (BG-22CP). All calves were weaned at 59 days of age and remained in the study until 73 days of age. Starter and total DM intake were not affected by grain source and dietary protein content (p > 0.05). The average daily gain and feed efficiency were improved, and ruminal total short-chain fatty acid, propionate, and butyrate concentrations were increased in BG calves compared to CG calves (p < 0.05). The ruminal concentrations of ammonia nitrogen (d 71; p = 0.02) and acetate (d 35; p = 0.02) were increased in CG fed calves compared to BG. The greatest wither height (p = 0.03) and blood insulin concentration (p = 0.03) were seen in BG-22CP treatment. In conclusion, BG has marginal benefit in the height of calves when fed with diet containing 22% CP which may be recommendable in replacement heifer rearing programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA